Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery throws light on blood pressure regulation

12.07.2011
Researchers have discovered that a protein found in the walls of blood vessels plays a key role in maintaining healthy blood pressure; a discovery that could one day lead to new treatments for people with high blood pressure.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the British Heart Foundation (BHF), shows that malfunction of the protein – a potassium channel called Kv7.4 – contributes to the maintenance of high blood pressure. The discovery is published this evening (2100hrs, 11 July) in the journal Circulation.

Dr Iain Greenwood from St George's, University of London led the study. He said "High blood pressure is one of the most common diagnoses in the UK and one in three adults has it – that's around 16 million people. People with high blood pressure are at much greater risk of heart attack, heart failure, and kidney disease and it's the main risk factor for stroke.

"We are trying to understand how our bodies go about regulating our blood pressure under normal circumstances – the more we understand, the better we can get at spotting what is going wrong and intervening when someone has this common chronic health issue. This discovery is an important part of the puzzle and might one day lead to new treatments."

Dr Greenwood and his team have shown that Kv7.4 plays an essential role in maintaining the extent to which arteries are constricted or dilated. He said "We have to be able to change our blood pressure at the drop of a hat – quite literally! If you dropped your hat and bent over to pick it up, you body would automatically reduce your blood pressure to account for the position of your head relative to your heart and the effect of gravity and then when you stood up again, your body would adjust it back up.

"The muscles in the walls of your blood vessels play a role in adjusting blood pressure and if they need to increase it, they squeeze the blood vessels more tightly to literally put mechanical pressure on your blood."

The researchers examined rodents that had high blood pressure and discovered that in some cases the Kv7.4 channels weren't working properly. These channels allow the passage of potassium out of the muscle cells in our blood vessels and they have to be open and closed at the right times so that the muscles can contract or relax when we need them to. In the animals that had high blood pressure and malfunctioning Kv7.4 channels, the problem was that the channels were blocked. This caused an imbalance in the finely controlled chemical environment of the muscle cell.

"The problem is," continued Dr Greenwood, "if the Kv7.4 channels cannot function, the muscle cells overreact to the signals the body is giving to increase blood pressure. We think that in the animals we studied the redundant Kv7.4 channels contributed markedly to their high blood pressure."

Whilst it is extremely unlikely that most people with high blood pressure have defective Kv7.4 channels, the researchers hope that by understanding the key role they play in maintaining healthy blood pressure we can use this knowledge to develop new strategies for adjusting blood pressure using drug treatments in the future.

Professor Douglas Kell, Chief Executive, BBSRC said "If we are to have long, healthy lives, we need to understand how our bodies cope with the demands we place on them. Increasing our knowledge of the biology that underpins normal, healthy processes will pave the way for future strategies to prevent or treat health problems. Maintaining healthy blood pressure is an important part of keeping us all well and so this research could be of great benefit to many people in the future."

Professor Jeremy Pearson, Associate Medical Director at the British Heart Foundation, said "Physical activity, maintaining a healthy weight, reducing the amount of salt and alcohol you consume, and increasing the amount of fruit and vegetables you eat can all play a part in lowering your risk of having high blood pressure. However, we still do not fully understand what causes the condition in most people - and current medicines to treat it are often not fully effective. Crucial research such as this could lead to new medical treatments for high blood pressure."

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>