Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery throws light on blood pressure regulation

12.07.2011
Researchers have discovered that a protein found in the walls of blood vessels plays a key role in maintaining healthy blood pressure; a discovery that could one day lead to new treatments for people with high blood pressure.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the British Heart Foundation (BHF), shows that malfunction of the protein – a potassium channel called Kv7.4 – contributes to the maintenance of high blood pressure. The discovery is published this evening (2100hrs, 11 July) in the journal Circulation.

Dr Iain Greenwood from St George's, University of London led the study. He said "High blood pressure is one of the most common diagnoses in the UK and one in three adults has it – that's around 16 million people. People with high blood pressure are at much greater risk of heart attack, heart failure, and kidney disease and it's the main risk factor for stroke.

"We are trying to understand how our bodies go about regulating our blood pressure under normal circumstances – the more we understand, the better we can get at spotting what is going wrong and intervening when someone has this common chronic health issue. This discovery is an important part of the puzzle and might one day lead to new treatments."

Dr Greenwood and his team have shown that Kv7.4 plays an essential role in maintaining the extent to which arteries are constricted or dilated. He said "We have to be able to change our blood pressure at the drop of a hat – quite literally! If you dropped your hat and bent over to pick it up, you body would automatically reduce your blood pressure to account for the position of your head relative to your heart and the effect of gravity and then when you stood up again, your body would adjust it back up.

"The muscles in the walls of your blood vessels play a role in adjusting blood pressure and if they need to increase it, they squeeze the blood vessels more tightly to literally put mechanical pressure on your blood."

The researchers examined rodents that had high blood pressure and discovered that in some cases the Kv7.4 channels weren't working properly. These channels allow the passage of potassium out of the muscle cells in our blood vessels and they have to be open and closed at the right times so that the muscles can contract or relax when we need them to. In the animals that had high blood pressure and malfunctioning Kv7.4 channels, the problem was that the channels were blocked. This caused an imbalance in the finely controlled chemical environment of the muscle cell.

"The problem is," continued Dr Greenwood, "if the Kv7.4 channels cannot function, the muscle cells overreact to the signals the body is giving to increase blood pressure. We think that in the animals we studied the redundant Kv7.4 channels contributed markedly to their high blood pressure."

Whilst it is extremely unlikely that most people with high blood pressure have defective Kv7.4 channels, the researchers hope that by understanding the key role they play in maintaining healthy blood pressure we can use this knowledge to develop new strategies for adjusting blood pressure using drug treatments in the future.

Professor Douglas Kell, Chief Executive, BBSRC said "If we are to have long, healthy lives, we need to understand how our bodies cope with the demands we place on them. Increasing our knowledge of the biology that underpins normal, healthy processes will pave the way for future strategies to prevent or treat health problems. Maintaining healthy blood pressure is an important part of keeping us all well and so this research could be of great benefit to many people in the future."

Professor Jeremy Pearson, Associate Medical Director at the British Heart Foundation, said "Physical activity, maintaining a healthy weight, reducing the amount of salt and alcohol you consume, and increasing the amount of fruit and vegetables you eat can all play a part in lowering your risk of having high blood pressure. However, we still do not fully understand what causes the condition in most people - and current medicines to treat it are often not fully effective. Crucial research such as this could lead to new medical treatments for high blood pressure."

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>