Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Suggests Way to Block Fetal Brain Damage Produced By Oxygen Deprivation

02.09.2011
Examining brain damage that occurs when fetuses in the womb are deprived of oxygen, researchers at The Scripps Research Institute have discovered that damage does not occur randomly but is linked to the specific action of a naturally occurring fatty molecule called LPA, acting through a receptor that transfers information into young brain cells.

This observation made in mice suggests that LPA may also be linked to the damage caused by oxygen deprivation in human fetuses. If that proves to be the case, the research may help scientists and physicians better understand and find new ways to address the numerous developmental disorders that can arise when fetuses are deprived of oxygen in the womb—including mental retardation, epilepsy, schizophrenia, autism, cerebral palsy and a range of other physical and mental problems.

"Fetal brain damage from oxygen deprivation involves specific changes that are, surprisingly, mediated by this lipid signal called LPA," said Scripps Research Professor Jerold Chun, MD, PhD, a member of the Dorris Neuroscience Center who led the research, which appeared in an advance, online issue of the journal Proceedings of the National Academy of Sciences (PNAS) this week.

"Because this pathway can be targeted with drugs," he added, "the discovery suggests that creating new medicines that target LPA receptors may be a way of limiting or preventing serious developmental brain diseases."

Currently, there is no way to treat the neurological damage produced by oxygen deprivation.

How Lack of Oxygen Affects the Fetal Brain

A developing fetus might be temporarily deprived of oxygen—a condition known as “hypoxia”—for any number of reasons, including disruption of blood flow, exposure to smoke, carbon monoxide, or physical trauma.

Physicians have long known that hypoxia can lead to brain damage and increased risk of developmental disorders, and existing public health efforts are aimed at mitigating these risks. Awareness that carbon monoxide from cigarettes can cause hypoxia, for instance, is the major reason why women are warned not to smoke when they are pregnant.

Still, there is a need to find other ways to address the problem, since not every situation in which fetuses might be subjected to oxygen deprivation is preventable. The discovery by Chun, graduate student Keira Herr, and colleagues suggests that there may be a way to mitigate the damage caused by hypoxia directly, by drugs targeting the molecules in the brain that mediates this damage—specifically, the receptor for the phospholipid molecule lysophosphatidic acid (LPA).

Phospholipids, molecules of fat with a charged head on one end, are universally found in biological organisms because they are an essential building block of cellular membranes, defining the boundaries of cells and keeping things inside a cell separated from that which is outside.

But lipids do more than just form barriers. LPA acts as a signal to affect the development of mammalian brains—something that Chun and his colleagues first demonstrated several years ago. His laboratory identified the first cellular receptor to which LPA binds, and they discovered that LPA acts as a signal that influences neurogenesis, the formation of new neurons when fetal brains are developing in the womb, along with the architecture of the brain.

As the brain grows in developing fetuses, it forms specialized regions very quickly. Many of these regions must be up and running by the time a baby is born. Newborns need to be able to breathe, drink, digest, respond to stimuli, and function in countless other basic ways in order to survive.

Problems that arise as the early brain develops may lead to developmental disorders.

Findings that Provide a New Strategy to Block Damage

The prominent role LPA plays in fetal brain development is what led Chun and his colleagues to investigate whether it also played a role in developmental disorders, many of which are believed to be linked to brain disorganization that arises during early development as has been documented in the clinical literature following hypoxic insults.

The team studied the effect of hypoxia in the brains of developing mice and also on brains temporarily grown in Petri dishes. In particular, the researchers studied the changes that occur in young neurons of the cerebral cortex, the part of the brain believed to be involved in higher functions, like memory, cognition, reasoning, and the interpretation of sensory input.

Chun and his colleagues discovered that when hypoxia damages developing cerebral cortical neurons, it does so in very specific ways that require LPA signaling. Scientists had long assumed that the association between hypoxia and brain damage was a non-specific one in which individual neurons all over the brain were randomly killed as a result of being deprived of oxygen.

What Chun and his colleagues found, however, is that hypoxia causes the neurons to become overstimulated, mimicking effects produced by excessive LPA exposure. Genetically removing the receptors for LPA or blocking them through drugs stopped these effects.

Knowing that hypoxia causes brain damage through this LPA signaling pathway provides a strategy to target and block that damage. Blocking LPA signaling may be a new way to prevent damaging changes to the brain and attenuate or prevent diseases linked to hypoxia, a concept that awaits further testing in humans.

The article, "Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA ) signaling," (doi: 10.1073/pnas.1106129108) by Keira Joann Herr, Deron R. Herr, Chang-Wook Lee, Kyoko Noguchi, and Jerold Chun appears in the journal PNAS. See: http://dx.doi.org/10.1073/pnas.1106129108

This work was funded primarily by the National Institutes of Health, with fellowship support by the Agency of Science, Technology and Research, Singapore.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>