Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Suggests Way to Block Fetal Brain Damage Produced By Oxygen Deprivation

02.09.2011
Examining brain damage that occurs when fetuses in the womb are deprived of oxygen, researchers at The Scripps Research Institute have discovered that damage does not occur randomly but is linked to the specific action of a naturally occurring fatty molecule called LPA, acting through a receptor that transfers information into young brain cells.

This observation made in mice suggests that LPA may also be linked to the damage caused by oxygen deprivation in human fetuses. If that proves to be the case, the research may help scientists and physicians better understand and find new ways to address the numerous developmental disorders that can arise when fetuses are deprived of oxygen in the womb—including mental retardation, epilepsy, schizophrenia, autism, cerebral palsy and a range of other physical and mental problems.

"Fetal brain damage from oxygen deprivation involves specific changes that are, surprisingly, mediated by this lipid signal called LPA," said Scripps Research Professor Jerold Chun, MD, PhD, a member of the Dorris Neuroscience Center who led the research, which appeared in an advance, online issue of the journal Proceedings of the National Academy of Sciences (PNAS) this week.

"Because this pathway can be targeted with drugs," he added, "the discovery suggests that creating new medicines that target LPA receptors may be a way of limiting or preventing serious developmental brain diseases."

Currently, there is no way to treat the neurological damage produced by oxygen deprivation.

How Lack of Oxygen Affects the Fetal Brain

A developing fetus might be temporarily deprived of oxygen—a condition known as “hypoxia”—for any number of reasons, including disruption of blood flow, exposure to smoke, carbon monoxide, or physical trauma.

Physicians have long known that hypoxia can lead to brain damage and increased risk of developmental disorders, and existing public health efforts are aimed at mitigating these risks. Awareness that carbon monoxide from cigarettes can cause hypoxia, for instance, is the major reason why women are warned not to smoke when they are pregnant.

Still, there is a need to find other ways to address the problem, since not every situation in which fetuses might be subjected to oxygen deprivation is preventable. The discovery by Chun, graduate student Keira Herr, and colleagues suggests that there may be a way to mitigate the damage caused by hypoxia directly, by drugs targeting the molecules in the brain that mediates this damage—specifically, the receptor for the phospholipid molecule lysophosphatidic acid (LPA).

Phospholipids, molecules of fat with a charged head on one end, are universally found in biological organisms because they are an essential building block of cellular membranes, defining the boundaries of cells and keeping things inside a cell separated from that which is outside.

But lipids do more than just form barriers. LPA acts as a signal to affect the development of mammalian brains—something that Chun and his colleagues first demonstrated several years ago. His laboratory identified the first cellular receptor to which LPA binds, and they discovered that LPA acts as a signal that influences neurogenesis, the formation of new neurons when fetal brains are developing in the womb, along with the architecture of the brain.

As the brain grows in developing fetuses, it forms specialized regions very quickly. Many of these regions must be up and running by the time a baby is born. Newborns need to be able to breathe, drink, digest, respond to stimuli, and function in countless other basic ways in order to survive.

Problems that arise as the early brain develops may lead to developmental disorders.

Findings that Provide a New Strategy to Block Damage

The prominent role LPA plays in fetal brain development is what led Chun and his colleagues to investigate whether it also played a role in developmental disorders, many of which are believed to be linked to brain disorganization that arises during early development as has been documented in the clinical literature following hypoxic insults.

The team studied the effect of hypoxia in the brains of developing mice and also on brains temporarily grown in Petri dishes. In particular, the researchers studied the changes that occur in young neurons of the cerebral cortex, the part of the brain believed to be involved in higher functions, like memory, cognition, reasoning, and the interpretation of sensory input.

Chun and his colleagues discovered that when hypoxia damages developing cerebral cortical neurons, it does so in very specific ways that require LPA signaling. Scientists had long assumed that the association between hypoxia and brain damage was a non-specific one in which individual neurons all over the brain were randomly killed as a result of being deprived of oxygen.

What Chun and his colleagues found, however, is that hypoxia causes the neurons to become overstimulated, mimicking effects produced by excessive LPA exposure. Genetically removing the receptors for LPA or blocking them through drugs stopped these effects.

Knowing that hypoxia causes brain damage through this LPA signaling pathway provides a strategy to target and block that damage. Blocking LPA signaling may be a new way to prevent damaging changes to the brain and attenuate or prevent diseases linked to hypoxia, a concept that awaits further testing in humans.

The article, "Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA ) signaling," (doi: 10.1073/pnas.1106129108) by Keira Joann Herr, Deron R. Herr, Chang-Wook Lee, Kyoko Noguchi, and Jerold Chun appears in the journal PNAS. See: http://dx.doi.org/10.1073/pnas.1106129108

This work was funded primarily by the National Institutes of Health, with fellowship support by the Agency of Science, Technology and Research, Singapore.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>