Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Could Help Stem Infections of Parasitic Roundworms

11.08.2009
Working with researchers in China, biologists at UC San Diego have discovered how a Chinese drug effective in killing parasitic roundworms works.

Their discovery of the drug’s biological mechanism provides important new information about how to combat parasitic roundworms, which infect more than a billion people in tropical regions and are one of the leading causes of debilitation in underdeveloped countries.

The researchers detail their findings in the current issue of the open-access journal PLoS Neglected Tropical Diseases.

Parasitic intestinal roundworms, such as hookworms—estimated to affect as many as 740 million people worldwide—and whipworms, which infect an estimated 795 million people, are considered by public-health officials to have a combined debilitating impact on human populations that is equal to or great than malaria or tuberculosis. But few drugs have been developed to effectively combat their infection.

“For practical reasons, only one drug, albendazole, is now widely used in administering single-dose treatments to large populations,” said Raffi Aroian, a professor of biology at UCSD who headed the research effort. “But because of the enormous numbers of people that need to be treated and the necessity of repeated treatments due to high re-infection rates, the development of resistance to albendazole is a serious threat to large-scale de-worming efforts.”

“We are studying this Chinese drug, tribendimidine, that clinically appears to be as good as albendazole,” he added.

Developed by the Chinese Center for Disease Control and Prevention in Shanghai, tribendimidine has not yet been approved for human use. Recent clinical trials in China and Africa have found the drug to be effective in humans against some roundworm parasites, such as hookworms. But not much is known about the biological mechanisms by which the drug kills roundworms or the biochemical pathways through which roundworms can develop resistance to tribendimidine.

“This information is important for preventing, detecting and managing the resistance that some organisms can evolve to drugs,” said Aroian. “It’s also important in order to safely administer the drug to large populations and for knowing how to combine tribendimidine with other drugs.”

Yan Hu, a postdoctoral fellow from China working in Aroian’s laboratory, contacted Shu-Hua Xiao, a professor at the Chinese CDC in Shanghai, and began a two-year series of studies with the laboratory roundworm C. elegans that allowed her to determine tribendimidine’s mechanism of action.

She did this by first developing genetic mutants resistant to tribendimidine and later analyzing another set of mutants to two other drugs used to treat roundworms—levamisole and pyrantel. Hu then determined that all of the mutants had the same genetic abnormalities, meaning that the biochemical pathways used to develop drug resistance in the animals were similar in all three. Mutants that develop resistance to albendazole, meanwhile, have a totally different set of genetic abnormalities.

Because levamisole and pyrantel are substantially less effective as albendazole in killing roundworms, these drugs are not the first choice for mass administration of drugs. But the results from Hu and her collaborators suggest that tribendimidine could be effectively used in areas instead of albendazole where parasites are likely to or have already developed a resistance to albendazole. Tribendimidine could also be combined with albendazole, the researchers said, to increase the effectiveness of killing parasitic roundworms, since both drugs have different biological killing mechanisms.

“Tribendimidine is not just a little bit different from albendazole,” said Aroian. “It’s in an entirely different class of drugs. The fact that tribendimidine is different from albendazole, but has the same level of effectiveness, and is in the same class as pyrantel and levamisole should increase people’s comfort level in using this new drug.”

A video of Aroian and Hu describing their results can be found at: http://wormfreeworld.org/worms.mp4 The researchers were supported in their study by grants from the National Institutes of Health.

Comment: Raffi Aroian, 858-822-1396, raroian@ucsd.edu

Kim McDonald | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>