Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery Could Help Stem Infections of Parasitic Roundworms

Working with researchers in China, biologists at UC San Diego have discovered how a Chinese drug effective in killing parasitic roundworms works.

Their discovery of the drug’s biological mechanism provides important new information about how to combat parasitic roundworms, which infect more than a billion people in tropical regions and are one of the leading causes of debilitation in underdeveloped countries.

The researchers detail their findings in the current issue of the open-access journal PLoS Neglected Tropical Diseases.

Parasitic intestinal roundworms, such as hookworms—estimated to affect as many as 740 million people worldwide—and whipworms, which infect an estimated 795 million people, are considered by public-health officials to have a combined debilitating impact on human populations that is equal to or great than malaria or tuberculosis. But few drugs have been developed to effectively combat their infection.

“For practical reasons, only one drug, albendazole, is now widely used in administering single-dose treatments to large populations,” said Raffi Aroian, a professor of biology at UCSD who headed the research effort. “But because of the enormous numbers of people that need to be treated and the necessity of repeated treatments due to high re-infection rates, the development of resistance to albendazole is a serious threat to large-scale de-worming efforts.”

“We are studying this Chinese drug, tribendimidine, that clinically appears to be as good as albendazole,” he added.

Developed by the Chinese Center for Disease Control and Prevention in Shanghai, tribendimidine has not yet been approved for human use. Recent clinical trials in China and Africa have found the drug to be effective in humans against some roundworm parasites, such as hookworms. But not much is known about the biological mechanisms by which the drug kills roundworms or the biochemical pathways through which roundworms can develop resistance to tribendimidine.

“This information is important for preventing, detecting and managing the resistance that some organisms can evolve to drugs,” said Aroian. “It’s also important in order to safely administer the drug to large populations and for knowing how to combine tribendimidine with other drugs.”

Yan Hu, a postdoctoral fellow from China working in Aroian’s laboratory, contacted Shu-Hua Xiao, a professor at the Chinese CDC in Shanghai, and began a two-year series of studies with the laboratory roundworm C. elegans that allowed her to determine tribendimidine’s mechanism of action.

She did this by first developing genetic mutants resistant to tribendimidine and later analyzing another set of mutants to two other drugs used to treat roundworms—levamisole and pyrantel. Hu then determined that all of the mutants had the same genetic abnormalities, meaning that the biochemical pathways used to develop drug resistance in the animals were similar in all three. Mutants that develop resistance to albendazole, meanwhile, have a totally different set of genetic abnormalities.

Because levamisole and pyrantel are substantially less effective as albendazole in killing roundworms, these drugs are not the first choice for mass administration of drugs. But the results from Hu and her collaborators suggest that tribendimidine could be effectively used in areas instead of albendazole where parasites are likely to or have already developed a resistance to albendazole. Tribendimidine could also be combined with albendazole, the researchers said, to increase the effectiveness of killing parasitic roundworms, since both drugs have different biological killing mechanisms.

“Tribendimidine is not just a little bit different from albendazole,” said Aroian. “It’s in an entirely different class of drugs. The fact that tribendimidine is different from albendazole, but has the same level of effectiveness, and is in the same class as pyrantel and levamisole should increase people’s comfort level in using this new drug.”

A video of Aroian and Hu describing their results can be found at: The researchers were supported in their study by grants from the National Institutes of Health.

Comment: Raffi Aroian, 858-822-1396,

Kim McDonald | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>