Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of source of glycogen 'manufacturing' errors sheds light on fatal disease

02.03.2011
Indiana University scientists have solved a perplexing mystery regarding one of the body's main energy storage molecules, in the process shedding light on a possible route to treatment of a rare but deadly disease in teenagers.

The disease occurs when a genetic mutation causes excessive amounts of phosphate to build up in glycogen. Glycogen is a chain-like molecule the body uses to temporarily store glucose when it's not needed to provide energy for cellular activities. The excess phosphate causes unnatural glycogen structures to appear in the body, including the brain, resulting in progressive neurological problems.

In a paper in the March 2, 2011 issue of the journal Cell Metabolism, a research team led by Peter J. Roach, Ph.D., professor of biochemistry and molecular biology at the IU School of Medicine, has identified where the extra phosphate comes from, and how it is chemically linked to the glycogen molecules. The findings, Dr. Roach said, suggest a possibility for treating the disease – stopping the body from producing glycogen.

Lafora disease, named after the Spanish physician who identified it, strikes early in the teen years with epileptic seizures and then other neurological symptoms that grow progressively worse. It is always fatal, usually within 10 years.

"It's a very harrowing disease and there's no treatment right now. It's thankfully rare, but for the families affected it's tragic," said Dr. Roach, Distinguished Professor and a Chancellor's Professor, Indiana University-Purdue University Indianapolis.

The disease is caused by a mutation to one of two genes, one leading to a defective version of a protein called laforin. In previous research, Dr. Roach and his collaborators showed that laforin's role is to remove phosphate residues from glycogen. When the body cannot produce laforin, the phosphate levels in glycogen build up, resulting in Lafora disease.

What had puzzled scientists was the source of the phosphate. The answer, Dr. Roach and his colleagues report in Cell Metabolism, is found in the enzyme that cells normally use to build up the glycogen molecules. When there are extra glucose molecules in the body, such as after a meal, the enzyme, like a tiny molecular machine, hooks the glucose molecules onto the glycogen chain. In the process, phosphates that are attached to the glucose are discarded.

But once every 10,000 cycles or so, a phosphate molecule remains attached when the enzyme hooks the glucose molecule onto the glycogen chain. The job of laforin is to correct for those errors. Without the laforin, phosphates build up and the deadly disease is the result.

Dr. Roach and his colleagues note that animal experiments suggest that a treatment to counteract the laforin mutation could be compounds that would block the production of glycogen. Although a lack of glycogen could have side effects – such as greater propensity to develop diabetes – they might be acceptable in the face of such a deadly alternative, Dr. Roach said. However, such an approach is only a theoretical possibility at his point, he said.

The lead author for the Cell Metabolism paper was Vincent S. Tagliabracci, Ph.D., now at the University of California San Diego. Other collaborators included researchers at the Complex Carbohydrate Research Center at the University of Georgia.

Funding for the research was provided by grants from the National Institutes of Health and the American Heart Association.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>