Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery reveals how bacteria distinguish harmful vs. helpful viruses

01.09.2014

When they are not busy attacking us, germs go after each other. But when viruses invade bacteria, it doesn't always spell disaster for the infected microbes: Sometimes viruses actually carry helpful genes that a bacterium can harness to, say, expand its diet or better attack its own hosts.

Scientists have assumed the bacterial version of an immune system would robotically destroy anything it recognized as invading viral genes. However, new experiments at Rockefeller University have now revealed that one variety of the bacterial immune system known as the CRISPR-Cas system can distinguish viral foe from friend. And, the researchers report in a paper published August 31 in Nature, it does so by watching for one particular cue.


Above, particles of the virus ΦNM1, applied at varying concentrations, killed cells in the Staphylococcus aureus "lawn," creating clear plaques. Researchers have shown Staph can detect whether a virus, such as ΦNM1, is destructive or potentially helpful.

Credit: Zach Veilleux/Rockefeller University

"Transcription — an initial step in the process that reads genes, including those of viruses — makes the difference," says researcher Luciano Marraffini, head of the Laboratory of Bacteriology. "The full genome of viruses in their lytic, or destructive phase, is transcribed. Meanwhile, a few of the genes from a virus are transcribed during its lysogenic, or dormant phase."

Viruses in their lytic phase make copies of themselves using a cell's machinery before destroying it to liberate these new viruses. Viruses in their lysogenic phase, meanwhile, quietly integrate into a host's genetic material. And this is where they offer their potential benefit to the bacteria, which co-opt viral genes for their own ends. In fact, some disease-causing microbes, such as the bacterium responsible for diphtheria, must pick up the right virus in order to attack humans.

Scientists have only discovered this adaptive bacterial immune system relatively recently. Its function relies on CRISPRs, sections of DNA that contain repeating sequences interspersed with unique sequences called spacers. (CRISPR stands for clustered regularly interspaced short palindromic repeats.) The spacer sequences match the sequences in the viral genetic code, making it possible for enzymes encoded by CRISPR-associated genes (Cas) to chop out single spacer sequences from the RNA transcribed from the CRISPR DNA. Other Cas enzymes then use these spacer sequences as guides to target invaders for destruction.

The system can adapt to new invaders by acquiring new spacer sequences to target them. Recently, CRISPR-Cas systems have attracted significant scientific attention because their ability to make precisely targeted cuts in DNA can be put to use to genetically engineer all types of cells.

"Our understanding of CRISPR-Cas systems remains in the early stages, but, so far, it has generally been thought they lack a sophisticated way of discriminating their targets. In other words, once they target something, it will be chopped up," says the study's lead author, graduate student Gregory Goldberg. "For the first time, our work has shown that a CRISPR-Cas system, one found in Staphylococcus bacteria, can detect whether or not a virus is in its destructive phase and poses an immediate threat."

Most previous work has focused on lytic viruses. However, Staphylococci host many viruses capable of entering a lysogenic phase. The researchers also uncovered a telling asymmetry in the Staphylococcal CRISPR system's ability to effectively target a sequence and its counterpart on two strands of complimentary DNA. They suspected this discrepancy arose because transcription proceeds in a single direction for most viral genes, meaning one of the two target strands is not transcribed.

"The big clue showed up when we isolated a mutant virus that managed to evade destruction. Sometimes viruses can do this through a mutation in a target sequence that prevents the system from identifying them. But when we sequenced the genome of this phage, we found a mutation in a region that promotes transcription instead," Goldberg says.

In a series of experiments, he and colleagues tested their hypothesis that the Staphylococcal CRISPR-Cas system, known as Type III-A, can tolerate an infection by a lysogenic virus, so long as the target sequences are not transcribed. They engineered a target sequence that would undergo transcription only in the presence of a specific chemical. As a result, the Type III-A CRISPR-Cas system only destroyed the target in the presence of this chemical.

"This discovery of a transcription requirement is likely to surprise many who work with these systems," Marraffini says. "Although we do not yet understand the mechanism behind it, we can say that the Type -III-A system is quite different from other CRISPR-Cas systems, of which there is a mysteriously large variety. Our discovery hints at the possibility that each CRISPR type and subtype recognizes and destroys its targets in different ways, each in tune with a particular bacterium's needs. If these different targeting mechanisms do exist, they could have important implications for biotechnology."

Zach Veilleux | Eurek Alert!
Further information:
http://www.rockefeller.edu

Further reports about: CRISPR DNA Discovery Rockefeller bacteria bacterial genes immune lysogenic lytic sequence sequences spacer transcription viruses

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>