Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery reveals fate of nanoparticles in human cells

24.09.2009
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have uncovered what happens to biomimetic nanoparticles when they enter human cells.

They found that the important proteins that make up the outer layer of these nanoparticles are degraded by an enzyme called cathepsin L. Scientists now have to take this phenomenon into account and overcome this process to ensure the exciting field of nanomedicine can progress. The research is published today (22 September) in ACS Nano.

Dr Raphaël Lévy, a BBSRC David Phillips Fellow at the University of Liverpool and lead researcher on the project said: “We’ve known for some time that nanoparticles are taken into cells and there have been experiments done to establish their final destinations, but we didn’t know until now what state they are in by the time they get there.”

In most biological applications, nanoparticles are coated with a layer of molecules, often proteins, which determine the use of nanoparticles when they enter cells. The researchers have confirmed, in a wide range of cells, that nanoparticles are taken into a region called the endosome, where this essential coating is degraded by cathepsin L.

Dr Violaine Sée, also a BBSRC David Phillips Fellow at the University of Liverpool, and joint corresponding author, added: “One of the promising applications of nanoparticles in medicine is to use them as a method to deliver therapeutic protein molecules inside cells. For these biological therapies to be effective the proteins have to be maintained with high integrity and unfortunately we have seen this compromised by the degrading action of cathepsin L.”

The design of any intracellular nanodevice must now take into account the possibility of cathepsin L degradation and either bypass the endosome area all together or have some built-in inhibition of the enzyme.

Dr Lévy continued: “The methods we have developed will help with this as we can now measure the location and the state of the nanoparticle quickly and quantitatively.”

Professor Douglas Kell, BBSRC Chief Executive said: “Nanotechnology is an interesting area that has the potential to push all sorts of technological boundaries. There is promise of some useful applications in biology and we’ve already seen some excellent results with the development of nanomagnetic technology to guide therapeutic proteins and DNA to specific sites to treat tumours, for example. Fundamental bioscience research such as this, helps drive forward nanomedicine to ensure it has a real impact on health and wellbeing in the future.”

About the University of Liverpool
The University of Liverpool is a member of the Russell Group of leading research-intensive institutions in the UK. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £93 million annually.
About BBSRC
The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>