Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of regulatory role of key molecule provides further step towards future gene therapy to control disease

16.09.2009
Discovery by Hebrew University of Jerusalem researchers of an additional role for a key molecule in our bodies provides a further step in world-wide efforts to develop genetic regulation aimed at controlling many diseases, including AIDS and various types of cancers.

The molecule, known as Lysyl-tRNA synthetase (or LysRS in brief) is one of the most ancient molecules in the cell, where it has long been recognized for its contribution in the translation of the information contained in RNA into the amino acids that make up proteins. Amino acids are organic compounds which are present in and vital to every living cell.

Now, the Hebrew University scientists have discovered that LysRS plays an important additional role as a central regulator controlling expression of various genes. In this additional role, LysRS ceases its previous function at a certain point and participates in a chain of events that causes the freeing of inhibitors that prevent expression of certain genes.

The researchers say that this research has particularly great importance, since LysRS is known to be involved in diseases such as AIDS and cancers. The virus HIV uses the host's cellular LysRS in the process of replication. High levels of LysRS also have been observed in certain cancers, such as breast cancer. The specific molecular mechanisms in these contexts remain to be discovered.

An ability to understand the regulatory effect played by LysRS in various diseases could make an important contribution to the worldwide search for therapies that would control the “turning on” or “turning off” of specific genes that are operative in those diseases, they emphasize.

This research was performed by doctoral students Nurit Yannay-Cohen and Irit Carmi-Levy within the Department of Biochemistry and Molecular Biology, the Institute for Medical Research - Israel-Canada, at the Hebrew University Faculty of Medicine. The research was done under the guidance of Prof. Ehud Razin, former dean of the faculty, and Dr. Hovav Nechushtan. Their work was published in the journal Molecular Cell.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>