Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Provides Insights on How Plants Respond to Elevated CO2 Levels

07.07.2014

Biologists at UC San Diego have solved a long-standing mystery concerning the way plants reduce the numbers of their breathing pores in response to rising carbon dioxide levels in the atmosphere.

In a paper published in this week’s early online edition of Nature, they report the discovery of a new genetic pathway in plants, made up of four genes from three different gene families that control the density of breathing pores—or “stomata”—in plant leaves in response to elevated CO2 levels.


The discovery could provide agricultural scientists with new tools to engineer crops that can deal with droughts and high temperatures. Credit: Peter Trimming

Their discovery should help biologists better understand how the steadily increasing levels of CO2 in our atmosphere (which last spring, for the first time in recorded history, remained above 400 parts per million) are affecting the ability of plants and economically important crops to deal with heat stress and drought.

It could also provide agricultural scientists with new tools to engineer plants and crops that can deal with droughts and high temperatures like those now affecting the Southwestern United States.

“For each carbon dioxide molecule that is incorporated into plants through photosynthesis, plants lose about 200 hundred molecules of water through their stomata,” explains Julian Schroeder, a professor of biology who headed the research effort. “Because elevated CO2 reduces the density of stomatal pores in leaves, this is, at first sight beneficial for plants as they would lose less water.

However, the reduction in the numbers of stomatal pores decreases the ability of plants to cool their leaves during a heat wave via water evaporation. Less evaporation adds to heat stress in plants, which ultimately affects crop yield.”

Schroeder is also co-director of a new research entity at UC San Diego called “Food and Fuel for the 21st Century,” which is designed to apply basic research on plants to sustainable food and biofuel production.

“Our research is aimed at understanding the fundamental mechanisms and genes by which CO2 represses stomatal pore development,” says Schroeder. Working in a tiny mustard plant called Arabidopsis, which is used as a genetic model and shares many of the same genes as other plants and crops, he and his team of biologists discovered that the proteins encoded by the four genes they discovered repress the development of stomata at elevated CO2 levels.

Using a combination of systems biology and bioinformatic techniques, the scientists cleverly isolated proteins, which, when mutated, abolished the plant’s ability to respond to CO2 stress. Cawas Engineer, a postdoctoral scientist in Schroeder’s lab and the first author of the study, found that when plants sense atmospheric CO2 levels rising, they increase their expression of a key peptide hormone called Epidermal Patterning Factor-2, EPF2.

“The EPF2 peptide acts like a morphogen which alters stem cell character in the epidermis of growing leaves and blocks the formation of stomata at elevated CO2,” explains Engineer.

Because other proteins known as proteases are needed to activate the EPF2 peptide, the scientists also used a “proteomics” approach to identify a new protein that they called CRSP (CO2 Response Secreted Protease) which, they determined, is crucial for activating the EPF2 peptide.

“We identified CRSP, a secreted protein, which is responsive to atmospheric CO2 levels,” says Engineer. “CRSP plays a pivotal role in allowing the plant to produce the right amount of stomata in response to the concentration of CO2 in the atmosphere. You can imagine that such a ‘sensing and response’ mechanism involving CRSP and EPF2 could be used to engineer crop varieties which are better able to perform in the current and future high CO2 global climate where fresh water availability for agriculture is dwindling.”

The discoveries of these proteins and genes have the potential to address a wide range of critical agricultural problems in the future, including the limited availability of water for crops, the need to increase water use efficiency in lawns as well as crops and concerns among farmers about the impact heat stress will have in their crops as global temperatures and CO2 levels continue to rise.

“At a time where the pressing issues of climate change and inherent agronomic consequences which are mediated by the continuing atmospheric CO2 rise are palpable, these advances could become of interest to crop biologists and climate change modelers,” says Engineer.

Other scientists who participated in the research effort were UC San Diego biologists Majid Ghassemian and Honghong Hu, as well as Scott Peck and Jeffrey Anderson at the University of Missouri at Columbia.

Their study was supported by grants from the National Science Foundation, the National Institutes of Health and the U.S Department of Energy’s Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences.

Media Contact

Kim McDonald
858-534-7572
kmcdonald@ucsd.edu

Kim McDonald | Eurek Alert!

Further reports about: CO2 Insights atmosphere crop crops genes hormone mechanism protein proteins stomata

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>