Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery may provide new treatments for alcohol dependence

Researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden, have discovered a new brain mechanism involved in alcohol addiction involving the stomach hormone ghrelin.

When ghrelin's actions in the brain are blocked, alcohol's effects on the reward system are reduced. It is an important discovery that could lead to new therapies for addictions such as alcohol dependence.

The results will be published in the renowned American scientific journal Proceedings of the National Academy of Sciences (PNAS).

Ghrelin is a hormone produced by the stomach and, by signalling in the brain, increases hunger. The new finding, that it is also involved in alcohol addiction, highlights the reward system of the brain as a key target for ghrelin's effects. "Ghrelin's actions in the brain may be of importance for all kinds of addictions, including chemical drugs such as alcohol and even food" says Suzanne Dickson, Professor of Physiology, a leading expert in appetite regulation.

The work emerged from a unique collaboration between the research groups of Prof Suzanne Dickson and Prof Emeritus Jörgen Engel, including researchers Dr Elisabet Jerlhag and Dr Emil Egecioglu. They show that mice treated with ghrelin increase their alcohol consumption. When ghrelin's actions are blocked, for example, by administering ghrelin receptor antagonists, mice no longer show preference for an alcohol-associated environment -in other words, alcohol is no longer able to produce its addictive effects, that include reward searching behaviour (akin to craving in alcoholic patients).

"If we can develop drugs that block the receptors for ghrelin, we could have a new effective treatment for alcohol dependence. It may however take several years until such a pharmacological treatment will reach the patient", says Professor Emeritus Jörgen Engel, an authority on research on alcohol dependency at the Sahlgrenska Academy. The group has submitted a patent application for this invention.

FACTS on alcohol dependence
It is estimated that five percent of the adult Swedish population are alcohol dependent. Alcohol dependence is a complex and chronic disease which leads to adverse consequences affecting not only the patient but also their immediate family and has a profound economic burden on society (estimated to be around 60-100 billion kronor per year). Each year about 8,000 Swedes die of alcohol-related diseases.
For more information please contact:
Suzanne Dickson, Professor of Physiology, telephone: +46 703 693 568,
Jörgen Engel, Professor Emeritus of Pharmacology, telephone: +46 734 204 412,
Journal: Proceedings of the National Academy of Sciences (PNAS)
Article Title: Requirement of central ghrelin signaling for alcohol reward
Researchers: Elisabet Jerlhag, Emil Egecioglu, Sara Landgren, Nicolas Salomé, Markus Heilig, Diedrik Moechars, Rakesh Datta, Daniel Perrissoud, Suzanne L. Dickson, Jörgen A. Engel.
BY: Elin Lindström Claessen
+46 (0)31 7863869

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>