Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Prompts New Theory on Cause of Diabetes, Other Autoimmune Diseases

03.05.2010
The recent discovery of a protein fragment capable of causing diabetes in mice has spurred researchers at National Jewish Health and the University of Colorado Denver to propose a new hypothesis about the cause of diabetes and autoimmunity in general.

In the April 23, 2010, issue of Immunity, Drs. Brian Stadinski, John Kappler and George Eisenbarth propose that the unusual and rare presentation of protein fragments (peptides) to the immune system allows autoreactive T cells to escape the thymus and trigger autoimmune disease (abstract). The findings could lead to a new strategy for preventing type 1 diabetes.

"The immune system normally deletes dangerous, autoreactive T cells that recognize ‘self" peptides, which are a normal part of the organism," said Dr. Kappler, Professor of Immunology at National Jewish Health. "We believe autoreactive T cells in diabetes and other autoimmune diseases escape destruction in the thymus because they never see these poorly presented peptides there. But the T cells do encounter those peptides elsewhere in the body and trigger an autoimmune attack."

Autoimmune diseases, such as type 1 diabetes, multiple sclerosis and lupus, occur when the immune system turns against its own body. This attack is often led by T cells, which serve as coordinators and effectors of the adaptive immune response. During development the immune system tries to protect against this by subjecting T cells to a stringent selection process in the thymus. Any T cell with receptors that bind to self proteins are destroyed before they can circulate throughout the body. This system does occasionally fail, however, opening the door to autoimmune disease.

It has been a challenge for scientists to identify which peptides the autoreactive T cells bind to when they initiate autoimmune disease. Drs. Kappler, Stadinski and Kathryn Haskins, however, recently reported in Nature Immunology (abstract) that they had identified a small piece of the protein chromogranin A as the target for one of the most pathogenic T cells in a mouse model of diabetes. This, in conjunction with other discoveries, led them to a new hypothesis about diabetes and autoimmunity.

Cells display protein fragments, or peptides, on their surfaces. The peptides can be derived from self proteins or infectious organisms. The cells hold these peptides with a special protein, known as MHC in mice, sort of like a hotdog bun (MHC) holding a hotdog (peptide). If a T cell, with its unique receptor, can bind to the combined MHC-peptide pair, it is activated and initiates an immune response against that peptide or cells displaying it.

In the case of the chromogranin A peptide, the researchers found that it binds to MHC in an odd way. Instead of fitting cleanly in the MHC binding groove, it fills only part of the groove, hanging over the side and binding to a different area, much like a foot-long hotdog hanging out one end of a normal-sized bun. The peptide also binds very weakly to the MHC molecule.

Another team of researchers found a similar situation with an animal model of multiple sclerosis; only part of the MHC binding groove is filled and the peptide binds only weakly to MHC. Dr. Kappler and his colleagues suspect that a similar situation may occur in diabetes with a peptide from the insulin protein.

Drs. Kappler, Stadinski and Eisenbarth believe these autoimmune antigens may be important precisely because they bind so oddly and weakly to the MHC molecule. The researchers propose that such unusual binding means that these particular MHC-peptide pairs show up only rarely, or never, in the thymus where T-cell selection occurs. Out in the rest of the body, however, specialized processing of the proteins or high concentrations of the source protein produce enough of those odd MHC-protein complexes for the T cells to find them.

"When these T cells encounter the self protein for the first time in the periphery, they initiate an autoimmune response," said Dr. Kappler.

Diabetes and other autoimmune diseases have been associated with specific, relatively rare forms of MHC molecules. Kappler and his colleagues believe these rare forms of MHC are part of the autoimmune puzzle.

"Other scientists have proposed that the MHC molecules associated with autoimmune diseases bind all peptides weakly," said Dr. Kappler. "We think, however, that the MHC molecules can bind peptides perfectly well, but that their unique shape allows them to weakly bind and present peptides that no other MHC molecules can."

William Allstetter | EurekAlert!
Further information:
http://www.njhealth.org

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>