Discovery places turtles next to lizards on family tree

For decades, paleontologists and molecular biologists have disagreed about whether turtles are more closely related to birds and crocodiles or to lizards. Now, two scientists from the Mount Desert Island Biological Laboratory in Bar Harbor, Maine, and their colleagues from Dartmouth College and Harvard and Yale Universities have developed a new technique using microRNAs for classifying animals, and the secret is out. Turtles are closer kin to lizards than crocodiles.

To reach their conclusion, published in Nature News and Biology Letters, the research team looked at a newly discovered class of molecules called microRNA. Most of the genetic material or DNA that scientists study provides the code for building proteins, large molecules that form an essential part of every organism. But microRNAs are much smaller molecules that can switch genes on and off and regulate protein production. They are also remarkably similar within related animal groups and provide important clues for identification.

“Different microRNAs develop fairly rapidly in different animal species over time, but once developed, they then remain virtually unchanged,” said Kevin Peterson, a paleobiologist at MDIBL and Dartmouth College. “They provide a kind of molecular map that allows us to trace a species’ evolution.”

Peterson worked with Ben King, a bioinformatician at MDIBL. “My role in the study was to enhance our software so we could find new and unique microRNAs in the lizard genome,” King said. “We identified 77 new microRNA families, and four of these turned out to also be expressed in the painted turtle. So we had the evidence we needed to say that turtles are a sister group to lizards and not crocodiles.”

Though few creatures have been as puzzling as the turtle, the research team plans to use its microRNA analysis on other animals to help determine their origins and relationships as well. It is also developing a web-based platform to share the software with other researchers around the world.

In addition to King and Peterson, the research team included Tyler Lyson and Jacques Gauthier from Yale University, Eric Sperling from Harvard University, and Alysha Heimberg from Dartmouth College.

Media Contact

Jerilyn Bowers EurekAlert!

More Information:

http://www.mdibl.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors