Discovery places turtles next to lizards on family tree

For decades, paleontologists and molecular biologists have disagreed about whether turtles are more closely related to birds and crocodiles or to lizards. Now, two scientists from the Mount Desert Island Biological Laboratory in Bar Harbor, Maine, and their colleagues from Dartmouth College and Harvard and Yale Universities have developed a new technique using microRNAs for classifying animals, and the secret is out. Turtles are closer kin to lizards than crocodiles.

To reach their conclusion, published in Nature News and Biology Letters, the research team looked at a newly discovered class of molecules called microRNA. Most of the genetic material or DNA that scientists study provides the code for building proteins, large molecules that form an essential part of every organism. But microRNAs are much smaller molecules that can switch genes on and off and regulate protein production. They are also remarkably similar within related animal groups and provide important clues for identification.

“Different microRNAs develop fairly rapidly in different animal species over time, but once developed, they then remain virtually unchanged,” said Kevin Peterson, a paleobiologist at MDIBL and Dartmouth College. “They provide a kind of molecular map that allows us to trace a species’ evolution.”

Peterson worked with Ben King, a bioinformatician at MDIBL. “My role in the study was to enhance our software so we could find new and unique microRNAs in the lizard genome,” King said. “We identified 77 new microRNA families, and four of these turned out to also be expressed in the painted turtle. So we had the evidence we needed to say that turtles are a sister group to lizards and not crocodiles.”

Though few creatures have been as puzzling as the turtle, the research team plans to use its microRNA analysis on other animals to help determine their origins and relationships as well. It is also developing a web-based platform to share the software with other researchers around the world.

In addition to King and Peterson, the research team included Tyler Lyson and Jacques Gauthier from Yale University, Eric Sperling from Harvard University, and Alysha Heimberg from Dartmouth College.

Media Contact

Jerilyn Bowers EurekAlert!

More Information:

http://www.mdibl.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors