Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new way of developing resistance

01.09.2014

People use antibiotics far too often, with the result that pathogenic bacteria are becoming more and more resistant to these drugs. However, there is also another cause of increasing resistance, which has now been uncovered by Würzburg scientists who research infectious diseases.

Many infections that used to mean certain death can nowadays usually be overcome quickly by taking a few tablets. This is all thanks to antibiotics. So, it is all the more disturbing to physicians and patients alike that many pathogenic bacteria are becoming increasingly resistant to antibiotics.


From a colony of Staphylococcus aureus bacteria (middle, orange), groups that produce an antibiotic (white) and groups that are resistant to this antibiotic (periphery, yellow) gradually develop.

(Photo: Daniel Lopez)

This is particularly problematic in hospitals when bacteria spread that have become resistant to several antibiotics at the same time: these pathogens can be life-threatening for older and vulnerable patients. Sometimes such bacteria can be found in so-called biofilms on medical instruments or implants: they settle there in relatively large colonies inside a shared protective shell, which makes them even less receptive to drugs.

How is it that bacteria are becoming increasingly resistant? “It is because they come into contact with antibiotics too often and develop defense mechanisms,” according to the scientifically accepted explanation. Resistance is partly encouraged by the fact that physicians prescribe antibiotics too frequently and often even without good reason and by the fact that the agents are often mixed with food prophylactically in factory farming.

Competition between bacteria leads to resistance

Würzburg researchers have now discovered another way in which bacteria can become resistant – and surprisingly it has nothing to do with antibiotics used by humans. “Resistance already arises when competing bacteria live together in large numbers and in confined spaces,” says Dr. Daniel Lopez from the Research Center for Infectious Diseases at the University of Würzburg.

The scientists discovered this during experiments with Staphylococcus aureus bacteria, which are not resistant to antibiotics. They kept the bacteria under the conditions that prevail in a biofilm, i.e. numerous individuals in a confined space with a limited supply of nutrients.

A small evolution takes place in the biofilm

In this environment the Staphylococci become rivals and experience a kind of small-scale evolution: individual bacteria that are suddenly able to produce antibiotics through spontaneous mutations have the advantage. They keep the competition at a distance and multiply successfully. It is normal for bacteria to produce antibiotics themselves: even “in the wild” they use these agents to assert themselves against other bacteria, and many commonly prescribed antibiotics are derived from bacterial antibiotics.

In the biofilm created by the Würzburg researchers, the initial bacteria did not meekly surrender to this attack: they in turn developed mechanisms to defend themselves against the antibiotics, rendering themselves resistant. After just five days, there were three very distinctive groups of bacteria in the biofilm: the “harmless” original bacteria, the antibiotics producers, and the antibiotic-resistant group. This is reported by the Würzburg researchers in the current issue of the journal “Cell”.

Biofilms as breeding grounds for resistance

“Biofilms can therefore be breeding grounds for resistance without coming into contact with antibiotics from outside,” says Daniel Lopez. Consequently, hospitals should take even more care than they already do to prevent and combat biofilms. As their next step, the Würzburg researchers want to find out further details about what happens in biofilms. They are particularly interested in whether and how the ominous resistance development processes can be prevented.

“Evolution of Resistance to a Last-Resort Antibiotic in Staphylococcus aureus via Bacterial Competition”, Gudrun Koch, Ana Yepes, Konrad U. Förstner, Charlotte Wermser, Stephanie T. Stengel, Jennifer Modamio, Knut Ohlsen, Kevin R. Foster, and Daniel Lopez, Cell, Vol. 158, Issue 5, p1060–1071, 28. August 2014, DOI: 10.1016/j.cell.2014.06.046

Contact

Dr. Daniel Lopez, leader of the junior research group “Bacterial Cell Differentiation”, Research Center for Infectious Diseases, University of Würzburg, T +49 (0)931 31-83831, daniel.lopez@uni-wuerzburg.de

Daniel Lopez’s homepage: http://www.imib-wuerzburg.de/research/lopez/group-leader

Robert Emmerich | idw - Informationsdienst Wissenschaft

Further reports about: Biofilms Cell Competition Infectious Staphylococcus antibiotics aureus bacteria mechanisms resistance

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>