Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a bud-break gene could lead to trees adapted for a changing climate

17.06.2014

Scientists have confirmed the function of a gene that controls the awakening of trees from winter dormancy, a critical factor in their ability to adjust to environmental changes associated with climate change.

While other researchers have identified genes involved in producing the first green leaves of spring, the discovery of a master regulator in poplar trees (Populus species) could eventually lead to breeding plants that are better adapted for warmer climates.


The early shoot flushing of trees in this image was caused by overexpressing the EBB1 gene during natural release from dormancy in spring. (Photo courtesy of Oregon State University)

Credit: (Photo courtesy of Oregon State University)

The results of the study that began more than a decade ago at Oregon State University were published today in the Proceedings of the National Academy of Sciences, by scientists from Michigan Technological University and Oregon State.

"No one has ever isolated a controlling gene for this timing in a wild plant, outside of Arabidopsis, a small flowering plant related to mustard and cabbage," said Steve Strauss, co-author and distinguished professor of forest biotechnology at OSU. "This is the first time a gene that controls the timing of bud break in trees has been identified."

The timings of annual cycles — when trees open their leaves, when they produce flowers, when they go dormant — help trees adapt to changes in environmental signals like those associated with climate, but the genetics have to keep up, Strauss said.

While trees possess the genetic diversity to adjust to current conditions, climate models suggest that temperature and precipitation patterns in many parts of the world may expose trees to more stressful conditions in the future. Experts have suggested that some tree species may not be able to cope with these changes fast enough, whether by adaptation or migration. As a result, forest health may decline, trees may disappear from places they are currently found, and some species may even go extinct.

"For example, are there going to be healthy and widespread populations of Douglas fir in Oregon in a hundred years?" said Strauss. "That depends on the natural diversity that we have and how much the environment changes. Will there be sufficient genetic diversity around to evolve populations that can cope with a much warmer and likely drier climate? We just don't know."

Strauss called the confirmation of the bud-break gene — which scientists named EBB1 for short — a "first step" in developing the ability to engineer adaptability into trees in the future.

"Having this knowledge enables you to engineer changes when they might become urgent," he said.

Yordan Yordanov and Victor Busov at Michigan Tech worked with Cathleen Ma and Strauss at Oregon State to trace the function of EBB1 in buds and other plant tissues responsible for setting forth the first green shoots of spring. They developed modified trees that overproduced EBB1 genes and emerged from dormancy earlier in the year. They also showed that trees with less EBB1 activity emerged from dormancy later.

"The absence of EBB1 during dormancy allows the tree to progress through the physiological, developmental and adaptive changes leading to dormancy," said Busov, "while the expression of EBB1 in specific cell layers prior to bud-break enables reactivation of growth in the cells that develop into shoots and leaves, and re-entry into the active growth phase of the tree."

The study began when Strauss noticed poplar trees emerging earlier than others in an experimental field trial at Oregon State. One April morning, he found that four seedling trees in a 2.5-acre test plot were putting forth leaves at least a week before all the other trees. Strauss and Busov, a former post-doctoral researcher at Oregon State, led efforts to identify the genes responsible.

They found that EBB1 codes for a protein that helps to restart cell division in a part of the tree known as meristem, which is analogous to stem cells in animals. EBB1 also plays a role in suppressing genes that prepare trees for dormancy in the fall and in other processes such as nutrient cycling and root growth that are critical for survival. Altogether, they found nearly 1,000 other poplar genes whose activity is affected by EBB1.

It's unlikely that plant breeders will use the finding any time soon, Strauss said. Breeders tend to rely on large clusters of genes that are associated with specific traits such as hardiness, tree shape or flowering. However, as more genes of this kind are identified, the opportunity to breed or engineer trees adapted to extreme conditions will grow.

###

Funding for the research was provided by the U.S. Department of Agriculture, the U.S. Department of Energy and the Tree Biosafety and Genomics Research Cooperative at Oregon State.

Steven Strauss | Eurek Alert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Protein Shake-Up
27.03.2015 | Oak Ridge National Laboratory

nachricht How did the chicken cross the sea?
27.03.2015 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>