Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a bud-break gene could lead to trees adapted for a changing climate

17.06.2014

Scientists have confirmed the function of a gene that controls the awakening of trees from winter dormancy, a critical factor in their ability to adjust to environmental changes associated with climate change.

While other researchers have identified genes involved in producing the first green leaves of spring, the discovery of a master regulator in poplar trees (Populus species) could eventually lead to breeding plants that are better adapted for warmer climates.


The early shoot flushing of trees in this image was caused by overexpressing the EBB1 gene during natural release from dormancy in spring. (Photo courtesy of Oregon State University)

Credit: (Photo courtesy of Oregon State University)

The results of the study that began more than a decade ago at Oregon State University were published today in the Proceedings of the National Academy of Sciences, by scientists from Michigan Technological University and Oregon State.

"No one has ever isolated a controlling gene for this timing in a wild plant, outside of Arabidopsis, a small flowering plant related to mustard and cabbage," said Steve Strauss, co-author and distinguished professor of forest biotechnology at OSU. "This is the first time a gene that controls the timing of bud break in trees has been identified."

The timings of annual cycles — when trees open their leaves, when they produce flowers, when they go dormant — help trees adapt to changes in environmental signals like those associated with climate, but the genetics have to keep up, Strauss said.

While trees possess the genetic diversity to adjust to current conditions, climate models suggest that temperature and precipitation patterns in many parts of the world may expose trees to more stressful conditions in the future. Experts have suggested that some tree species may not be able to cope with these changes fast enough, whether by adaptation or migration. As a result, forest health may decline, trees may disappear from places they are currently found, and some species may even go extinct.

"For example, are there going to be healthy and widespread populations of Douglas fir in Oregon in a hundred years?" said Strauss. "That depends on the natural diversity that we have and how much the environment changes. Will there be sufficient genetic diversity around to evolve populations that can cope with a much warmer and likely drier climate? We just don't know."

Strauss called the confirmation of the bud-break gene — which scientists named EBB1 for short — a "first step" in developing the ability to engineer adaptability into trees in the future.

"Having this knowledge enables you to engineer changes when they might become urgent," he said.

Yordan Yordanov and Victor Busov at Michigan Tech worked with Cathleen Ma and Strauss at Oregon State to trace the function of EBB1 in buds and other plant tissues responsible for setting forth the first green shoots of spring. They developed modified trees that overproduced EBB1 genes and emerged from dormancy earlier in the year. They also showed that trees with less EBB1 activity emerged from dormancy later.

"The absence of EBB1 during dormancy allows the tree to progress through the physiological, developmental and adaptive changes leading to dormancy," said Busov, "while the expression of EBB1 in specific cell layers prior to bud-break enables reactivation of growth in the cells that develop into shoots and leaves, and re-entry into the active growth phase of the tree."

The study began when Strauss noticed poplar trees emerging earlier than others in an experimental field trial at Oregon State. One April morning, he found that four seedling trees in a 2.5-acre test plot were putting forth leaves at least a week before all the other trees. Strauss and Busov, a former post-doctoral researcher at Oregon State, led efforts to identify the genes responsible.

They found that EBB1 codes for a protein that helps to restart cell division in a part of the tree known as meristem, which is analogous to stem cells in animals. EBB1 also plays a role in suppressing genes that prepare trees for dormancy in the fall and in other processes such as nutrient cycling and root growth that are critical for survival. Altogether, they found nearly 1,000 other poplar genes whose activity is affected by EBB1.

It's unlikely that plant breeders will use the finding any time soon, Strauss said. Breeders tend to rely on large clusters of genes that are associated with specific traits such as hardiness, tree shape or flowering. However, as more genes of this kind are identified, the opportunity to breed or engineer trees adapted to extreme conditions will grow.

###

Funding for the research was provided by the U.S. Department of Agriculture, the U.S. Department of Energy and the Tree Biosafety and Genomics Research Cooperative at Oregon State.

Steven Strauss | Eurek Alert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht A Fluttering Accordion
04.08.2015 | Friedrich-Schiller-Universität Jena

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>