Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of natural antibody brings a universal flu vaccine a step closer

08.07.2011
An academic-industry collaboration by Scripps Research and Crucell finds broadly acting antibody against influenza viruses

Annually changing flu vaccines with their hit-and-miss effectiveness may soon give way to a single, near-universal flu vaccine, according to a new report from scientists at The Scripps Research Institute and the Dutch biopharmaceutical company Crucell.

They describe an antibody that, in animal tests, can prevent or cure infections with a broad variety of influenza viruses, including seasonal and potentially pandemic strains.

The finding, published in the journal Science Express on July 7, 2011, shows the influenza subtypes neutralized with the new antibody include H3N2, strains of which killed an estimated one million people in Asia in the late 1960s.

"Together this antibody and the one we reported in 2009 have the potential to protect people against most influenza viruses," said Ian Wilson, who is the Hansen Professor of Structural Biology and a member of the Skaggs Institute for Chemical Biology at Scripps Research, as well as senior author of the new paper with Crucell's chief scientific officer Jaap Goudsmit.

Tackling a Major Shortcoming

Wilson's laboratory has been working with Crucell scientists since 2008 to help them overcome the major shortcoming of current influenza vaccines: They work only against the narrow set of flu strains that the vaccine makers predict will dominate in a given year, so their effectiveness is temporary. In addition, current influenza vaccines provide little or no protection against unforeseen strains.

These shortcomings reflect a basic flu-virus defense mechanism. The viruses come packaged in spherical or filamentous envelopes that are studded with mushroom-shaped hemagglutinin (HA) proteins, whose more accessible outer structures effectively serve as decoys for a normal antibody response. "The outer loops on the HA head seem to draw most of the antibodies, but in a given strain these loops can mutate to evade an antibody response within months," said Wilson. Antiviral drugs aimed at these and other viral targets also lose effectiveness as flu virus populations evolve.

"The major goal of this research has been to find and attack relatively unvarying and functionally important structures on flu viruses," said Damian Ekiert, a graduate student in the Scripps Research Kellogg School of Science and Technology who is working in the Wilson laboratory. Ekiert and Crucell's Vice President for Antibody Discovery Robert H. E. Friesen are co-first authors of the Science Express report.

By sifting through the blood of people who had been immunized with flu vaccines, Goudsmit and his colleagues several years ago discovered an antibody that bound to one such vulnerable structure. In mice, an injection of the antibody, CR6261, could prevent or cure an otherwise-lethal infection by about half of flu viruses, including H1 viruses such as H1N1, strains of which caused deadly global pandemics in 1918 and 2009.

The Crucell researchers approached Wilson, whose structural biology lab has world-class expertise at characterizing antibodies and their viral targets. Ekiert, Wilson, and their colleagues soon determined the three-dimensional molecular structure of CR6261 and its binding site on HA, as they reported in Science in 2009. That binding site, or "epitope," turned out to be on HA's lower, less-accessible stalk portion. The binding of CR6261 to that region apparently interferes with flu viruses' ability to deliver their genetic material into host cells and start a new infection. That antibody is about to begin tests in human volunteers.

The Missing Piece

Crucell researchers subsequently searched for an antibody that could neutralize some or all of the remaining flu viruses unaffected by CR6261, and recently found one, CR8020, that fits this description. As the team now reports in the Science Express paper, CR8020 powerfully neutralizes a range of human-affecting flu viruses in lab-dish tests and in mice. The affected viruses include H3 and H7, two subtypes of great concern for human health that have already caused a pandemic (H3) or sporadic human infections (H7).

As with the CR6261 project, Ekiert and colleagues were able to grow crystals of the new antibody bound to an HA protein from a deadly strain of H3N2, and to use X-ray crystallography techniques to determine the antibody's structure and its precise epitope on the viral HA protein.

"It's even lower on the HA stalk than the CR6261 epitope; in fact it's closer to the viral envelope than any other influenza antibody epitope we've ever seen," said Ekiert.

Crucell is about to begin initial clinical trials of CR6261 in human volunteers, and the company expects eventually to begin similar trials of CR8020. If those trials succeed, aside from a vaccine the two antibodies could be combined and used in a "passive immunotherapy" approach. "This would mainly be useful as a fast-acting therapy against epidemic or pandemic influenza viruses," said Wilson. "The ultimate goal is an active vaccine that elicits a robust, long-term antibody response against those vulnerable epitopes; but developing that is going to be a challenging task."

Other authors of the paper, "A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses," are Gira Bhabha and Wenli Yu from Scripps Research; Ted Kwaks, Mandy Jongeneelen, Carla Ophorst, Freek Cox, Hans J.W.M. Korse, Boerries Brandenburg, Ronald Vogels, Just P.J. Brakenhoff, Ronald Kompier, Martin H. Koldijk and Wouter Koudstaal of Crucell Holland BV, Leiden, the Netherlands; Lisette A.H.M. Cornelissen of the Central Veterinary Institute, Wageningen University, Lelystad, the Netherlands; and Leo L. M. Poon and Malik Peiris of the Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong.

The research was supported by the US National Institute of Allergy and Infectious Diseases, National Institutes of Health; the US Department of Energy; and by Crucell Holland BV.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>