Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new molecule can lead to more efficient rocket fuel

30.12.2010
Trinitramid – that’s the name of the new molecule that may be a component in future rocket fuel. This fuel could be 20-30 percent more efficient in comparison with the best rocket fuels we have today. The discovery was made at the Royal Institute of Technology (KTH) in Sweden.

“A rule of thumb is that for every ten-percent increase in efficiency for rocket fuel, the payload of the rocket can double. What’s more, the molecule consists only of nitrogen and oxygen, which would make the rocket fuel environmentally friendly. This is more than can be said of today’s solid rocket fuels, which entail the emission of the equivalent of 550 tons of concentrated hydrochloric acid for each launch of the space shuttle,” says Tore Brinck, professor of physical chemistry at KTH.


Trinitramid – that’s the name of the new molecule that may be a component in future rocket fuel

Working with a research team at KTH, he discovered a new molecule in the nitrogen oxide group, which is not something that happens every day. It was while the scientists were studying the breakdown of another compound, using quantum chemistry computations, that they understood that the new molecule could be stable.

“As mentioned, what is specific to this molecule is that it contains only nitrogen and oxygen. Only eight such compounds were previously known, and most of them were discovered back in the 18th century. This is also clearly the largest of the nitrogen oxides. Its molecular formula is N(NO2)3, and the molecule is similar to a propeller in shape,” says Tore Brinck.

The research team, consisting of Martin Rahm and Sergey Dvinshikh as well as Professor Istvan Furó , besides Tore Brinck, has now shown how the molecule can be produced and analyzed. The scientists have also managed to produce enough of the compound in a test tube for it to be detectable.

“It remains to be seen how stable the molecule is in a solid form,” says Tore Brinck.

It was during work to find an alternative to today’s solid rocket fuel that the researchers found the new molecule. The findings are now being published in the respected journal Angewandte Chemie International Edition http://dx.doi.org/10.1002/anie.201007047.

For more information, please contact Tore Brinck at phone:
+46 (0)8 - 790 82 10 or tore@physchem.kth.se
Pressofficer Peter Larsson; press@kth.se; +46-76 050 6960

Peter Larsson | idw
Further information:
http://www.vr.se
http://dx.doi.org/10.1002/anie.201007047

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>