Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Links Proteins Necessary to Repair Membranes

12.06.2009
Researchers at UMDNJ-Robert Wood Johnson Medical School are a step closer to treating, and perhaps preventing, muscle damage caused by disease and aging.

In their study, published in the June issue of Journal of Biological Chemistry, the scientists have linked the newly discovered protein MG53 to a pathway that repairs human muscle tissue along with the proteins caveolin-3 (Cav3) and dysferlin. Prior to this study, the underlying interactions that inhibited membrane repair in muscle tissue were unknown.

Linking these proteins creates a mechanism that allows damaged membranes to be repaired, which may transform treatment for patients who suffer from severe complications of diseases such as muscular dystrophy, as well as cardiovascular disorders and conditions related to advancing age.

The study was led by Jianjie Ma, PhD, professor of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School, in collaboration with Professor Hiroshi Takeshima at Kyoto University, Japan.

According to Dr. Ma, human cells are continuously injured and naturally repaired through the life span. For instance, micro tears can occur as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders and muscular dystrophy, and even aging, compromise the method in which the body repairs its own tissues, resulting in severe damage. His research team announced in December 2008 that it had discovered MG53 as a key initiator of membrane repair in damaged tissue, making it the first group to specifically pinpoint a protein responsible for promoting cell repair.

In the new study, the team’s research has revealed that MG53 acts first as the initial sensor of damaged tissue during the repair process. Then, through its interaction with Cav3, MG53 recruits intracellular vesicles to the injury site in the membrane, acting as a trafficking agent in the repair process. The vesicles interact with dysferlin to fuse with the membrane, thereby creating a repair patch and allowing for normal membrane function.

“Dysferlin has previously been linked to muscle repair, but our findings show that it can not complete the process when MG53 is absent,” said Dr. Ma. “The discovery of MG53 as a necessary element in the repair mechanism provides a foundation in which to study the broader implications of how MG53 fits into the next generation of therapeutic treatments for patients with muscle and cardiovascular disease. We are also looking at its potential to prevent damage from ever occurring.”

In advance of its publication in the June issue of the Journal of Biological Chemistry, in which it was designated a paper of the week, the investigation appeared online in May as a featured research study. The research was supported by grants from the National Institutes of Health, the Ministry of Education, Science, Sports and Culture of Japan and the American Heart Association.

UMDNJ-ROBERT WOOD JOHNSON MEDICAL SCHOOL
As one of the nation’s leading comprehensive medical schools, Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,500 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments and hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs.

Jennifer Forbes | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>