Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery may lead to new class of allergy drugs

02.02.2009
Research published in the Journal of Leukocyte Biology identifies eotaxin as a novel drug target

If you've ever wondered why some allergic reactions progress quickly and may even become fatal, a new research report published in the February 2009 issue of the Journal of Leukocyte Biology provides an important part of the answer.

In the report, scientists from Queen's University of Belfast, University of Oxford and Trinity College Dublin show for the first time that eotaxin, a chemical that helps immune cells locate the site of infection, blocks basic "fighter" cells from transforming into "seeker" dendritic cells, resulting in a heightened allergic response.

"Our study reveals a new role for the chemokine eotaxin in controlling immune cell types at the site of allergic reaction," said Nigel Stevenson, a researcher involved in the study. "These findings are crucial for our understanding of allergic responses and may be instrumental for the design of new allergy drugs."

Stevenson and colleagues made this discovery by using immune cells grown in the lab and from healthy volunteers. Then the researchers mimicked what occurs during an allergic reaction by treating the cells with eotaxin, which was previously believed to only attract immune cells during an allergic reaction. Through a series of laboratory procedures, they tracked changes in immune cell type and found that eotaxin inhibits monocytes becoming dendritic cells (that find foreign invaders so other immune cells can neutralize them), resulting in more "fighter" cells being present during an allergic response. This discovery shows how and why eotaxin plays an important role in the severity of allergic reactions and may be a target for an entirely new class of allergy medications.

"For some people, allergies are very serious often debilitating problem, forcing them to be extremely careful about what they breathe, touch, or eat," said E. John Wherry, Deputy Editor of the Journal of Leukocyte Biology. "The insights from this work on the unexpected role of eotaxin should provide novel therapeutic opportunities for intervention during diseases like asthma, food allergies and other situations where unchecked allergic responses cause problems."

According to the U.S. Centers for Disease Control and Prevention Allergies, more than 50 million Americans suffer from allergies each year. Allergies are the 6th leading cause of chronic illness in the U.S., costing more than $18 billion. The most severe type of allergic reaction is called "anaphylaxis," which can be fatal.

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org
http://www.jleukbio.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>