Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery may lead to new class of allergy drugs

02.02.2009
Research published in the Journal of Leukocyte Biology identifies eotaxin as a novel drug target

If you've ever wondered why some allergic reactions progress quickly and may even become fatal, a new research report published in the February 2009 issue of the Journal of Leukocyte Biology provides an important part of the answer.

In the report, scientists from Queen's University of Belfast, University of Oxford and Trinity College Dublin show for the first time that eotaxin, a chemical that helps immune cells locate the site of infection, blocks basic "fighter" cells from transforming into "seeker" dendritic cells, resulting in a heightened allergic response.

"Our study reveals a new role for the chemokine eotaxin in controlling immune cell types at the site of allergic reaction," said Nigel Stevenson, a researcher involved in the study. "These findings are crucial for our understanding of allergic responses and may be instrumental for the design of new allergy drugs."

Stevenson and colleagues made this discovery by using immune cells grown in the lab and from healthy volunteers. Then the researchers mimicked what occurs during an allergic reaction by treating the cells with eotaxin, which was previously believed to only attract immune cells during an allergic reaction. Through a series of laboratory procedures, they tracked changes in immune cell type and found that eotaxin inhibits monocytes becoming dendritic cells (that find foreign invaders so other immune cells can neutralize them), resulting in more "fighter" cells being present during an allergic response. This discovery shows how and why eotaxin plays an important role in the severity of allergic reactions and may be a target for an entirely new class of allergy medications.

"For some people, allergies are very serious often debilitating problem, forcing them to be extremely careful about what they breathe, touch, or eat," said E. John Wherry, Deputy Editor of the Journal of Leukocyte Biology. "The insights from this work on the unexpected role of eotaxin should provide novel therapeutic opportunities for intervention during diseases like asthma, food allergies and other situations where unchecked allergic responses cause problems."

According to the U.S. Centers for Disease Control and Prevention Allergies, more than 50 million Americans suffer from allergies each year. Allergies are the 6th leading cause of chronic illness in the U.S., costing more than $18 billion. The most severe type of allergic reaction is called "anaphylaxis," which can be fatal.

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org
http://www.jleukbio.org

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>