Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of ionic elemental crystal against chemical intuition

30.01.2009
An ETH Zurich researcher has developed a computational method for predicting the structure of materials.

He used it to solve the structure of a newly synthesized form of pure boron that displays some unusual physical properties and brings a surprise: it is partially ionic.

New phase of elemental boron discovered

The new structure can be viewed as a NaCl-type structure, with anionic and cationic positions occupied by two different clusters of boron atoms (B12 and B2). The difference of the electronic properties of these clusters brings about charge transfer, making this material a partially ionic boron boride (B2)?+(B12)?-. Results have been published in today's "Nature" online magazine.

Boron is the chemical element most sensitive to impurities. This enhanced sensitivity makes experimental studies of this element very difficult. However, with the discovery of a new, superhard phase of the element, the theorists and expe-rimentalists involved in the research have now come a big step closer to understanding boron. A separate publication by the authors in the "Journal of Superhard Materials" demonstrated that the new phase is superhard.

Independently synthesized

The new superhard material was independently synthesized by two researchers who eventually joined forces with crystallographer Artem Oganov's theoretical team. Initially, Jiuhua Chen, a material scientist at Florida International University, and Vladimir Solozhenko, a physical chemist at the Centre National de la Recherche Scientifique (CNRS) in France, conducted experiments on ex-tremely pure boron material, containing at most one foreign atom to one million boron atoms. They exposed this material to temperatures of over 1,500 degrees Celsius and to pressures in the range 12-30 GPa, similar to those found several hundreds of kilometers inside the Earth. Under these conditions both teams of experimentalists found a new polymorph of boron, but could not solve its structure.

New method leads to breakthrough

Artem Oganov, working at ETH Zurich's Department of Material Science, has now developed a computational method for predicting the stable crystal structu-res of materials. His calculations reveal that in the new phase, boron atoms form two different kinds of nanoclusters: an icosahedron B12 consisting of twelve atoms and dumbbell B2 consisting of just two boron atoms.

These nanoclusters are arranged in the new phase of boron just as are sodium and chlorine ions in the rock salt (table salt) structure (see diagram). The new phase is predicted to remain stable to 89 GPa. The new knowledge obtained in this study allowed the researchers to propose a phase diagram for boron - the only light element whose phase diagram remained unknown until now.

Unusual properties identified

The unexpected structure of the new phase, which the authors called gamma-B, contains atoms which are ionized, meaning that the electrons are distributed between the atoms unevenly. According to classical textbooks, ionic bonds are possible only between two different elements, such as sodium and chlorine in table salt. But in the new structure ionic bonds occur between atoms of the same element, though belonging to two kinds of nanoclusters. This ionicity leads to unusual for an element phenomena in dielectric properties, lattice dynamics, and anomalous electronic properties. Additional experiments carried out by the researchers also show that the new phase is superhard.

Oganov and his colleagues expect that forms of other elements, such as carbon heterofullerites, might display charge transfer and partial ionicity. Now a profes-sor at State University of New York at Stony Brook (USA), Oganov anticipates that sooner or later applications will be developed which are based on ionic elements. These applications could be based on switching on or off the anomalous properties (for example, strong infrared absorption) possessed by ionic elements - such properties will display dramatic changes as a result of pressure- or temperature-induced phase transitions. In addition, interesting effects related to superconductivity may appear as well.

To download an image of the newly synthesized form of pure boron, click on:
http://www.cc.ethz.ch/media/picturelibrary/news/Bor-Kristall/
ETH Zurich
ETH Zurich (Swiss Federal Institute of Technology) has a student body of fourteen thousand students from 80 nations. Nearly 360 professors teach mainly in engineering sciences and architecture, system-oriented sciences, mathematics and natural sciences, as well as carry out research that is highly valued worldwide. Distinguished by the successes of 21 Nobel laureates, ETH Zurich is committed to providing its students with unparalleled education and outstanding leadership skills.

Roman Klingler | idw
Further information:
http://www.ethz.ch
http://www.cc.ethz.ch/media/picturelibrary/news/Bor-Kristall/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>