Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Discovery Illuminates Proton Channel Gene in Dinoflagellates

Mechanism in tiny, one-celled sea creature also present in higher vertebrates and humans

A 40-year search for a gene that causes some one-celled sea creatures to flash at night and is also found in others that produce deadly red tides, has been successfully culminated by a group of scientists led by Thomas E. DeCoursey, PhD, professor of biophysics and physiology at Rush University Medical Center.

The gene, discovered in a tiny marine organism called a dinoflagellate (Karlodinium veneficum), controls voltage-gated proton channels, which, in addition to triggering luminescence in certain single-cell sea creatures, activate many important biological mechanisms in other species, including humans.

Results of the study by DeCoursey, Susan M. E. Smith and co-researchers were published in the October 17, 2011 issue of the Proceedings of the National Academy of Sciences. The study was funded in part by grants from the National Science Foundation and the National Institutes of Health.

The existence of a voltage-gated proton channel in bioluminescent dinoflagellates was proposed in 1972 by J. Woodland Hastings, a co-author on the current study, and his colleague Margaret Fogel. They hypothesized that proton channels helped trigger the flash by activating luciferase, an enzyme that helps produce luminescence. But until now, the genetic code responsible for the proton channels in dinoflagellates had not been identified, although it had been decrypted in humans, mice, algae and sea squirts.

Voltage-gated proton channels are extremely versatile. In humans, they are involved in several basic biological processes, including release of histamine in basophils, a type of white blood cell. Proton channels also play a role in the production of reactive oxygen species such as hydrogen peroxide that kill bacteria in phagocytes, another kind of white blood cell, and in maturation of sperm immediately before fertilization.

In the current study, DeCoursey and co-researchers mined the gene sequence library of a K veneficum dinoflagellate and found a gene named kHv1 that is similar to those already known to code for proton channels in other species. Not surprisingly, there were many differences in the make-up of the proton channel molecules in humans and tiny sea creatures, but the most important parts of the molecules turned out to be almost identical. Electrophysiologic tests confirmed that the genetically coded protein was indeed a proton channel – but one with an unprecedented quality.

Proton currents in K veneficum differ from all known proton currents in having large inward currents—a result of the channels opening at membrane potentials about 60 mV more negative than in other species, the researchers found.

“Vertebrate proton channels open to allow acid extrusion, while dinoflagellate proton channels open to allow proton influx into a cell’s cytoplasm, making the channel ideally suited to trigger bioluminescence,” DeCoursey explained.

When dinoflagellates floating in water are mechanically stimulated by movement, an impulse (action potential) is sent along the membrane of an internal compartment called a vacuole. Clustered along the inside of this membrane are tiny pockets called scintillons, containing a combination of luciferin and luciferase – proteins that are able to produce a light flash under the right circumstances. The inside of the vacuole compartment is very acidic and has an abundance of protons.

As the electric impulse travels along the membrane, it causes the voltage-sensitive proton channels to open. Protons then flow from the vacuole into the scintillon, where they react with the luciferase and a flash of light results.

In nonbioluminescent mixotrophic species like K veneficum, proton influx might be involved in prey digestion (e.g., signaling prey capture) or prey capture (e.g., extrusion of stinging trichocysts).

Co-investigator Susan Smith carried out a phylogenetic analysis of known Hv1 sequences, finding high sequence diversity among the single-celled species and among invertebrates. She interpreted this finding to suggest the possibility of other novel functions of Hv1 in these species.

“As in multicellular organisms, ion channels in dinoflagellates play various roles in regulating basic life functions, which make them targets for controlling dinoflagellate populations and behavior,” the authors suggested.

Future research will show whether targeting proton channels might give us a handle on controlling dinoflagellate blooms that cause deadly red tides and are responsible for massive fresh kills. Certain dinoflagellate species produce some of the most deadly poisons known, such as saxitoxin, a neurotoxin 100,000 times more potent than cocaine. Paralytic shellfish poisoning occurs in humans who eat shellfish that have consumed toxic dinoflagellates.

In addition to DeCoursey, Smith (Emory School of Medicine) and Hastings (Harvard University), the authors of this paper include Deri Morgan, Boris Musset and Vladimir V. Cherny of Rush University Medical School, and Allen R. Place of the University of Maryland Center for Environmental Sciences.

Deb Song | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>