Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Discovery Illuminates Proton Channel Gene in Dinoflagellates

Mechanism in tiny, one-celled sea creature also present in higher vertebrates and humans

A 40-year search for a gene that causes some one-celled sea creatures to flash at night and is also found in others that produce deadly red tides, has been successfully culminated by a group of scientists led by Thomas E. DeCoursey, PhD, professor of biophysics and physiology at Rush University Medical Center.

The gene, discovered in a tiny marine organism called a dinoflagellate (Karlodinium veneficum), controls voltage-gated proton channels, which, in addition to triggering luminescence in certain single-cell sea creatures, activate many important biological mechanisms in other species, including humans.

Results of the study by DeCoursey, Susan M. E. Smith and co-researchers were published in the October 17, 2011 issue of the Proceedings of the National Academy of Sciences. The study was funded in part by grants from the National Science Foundation and the National Institutes of Health.

The existence of a voltage-gated proton channel in bioluminescent dinoflagellates was proposed in 1972 by J. Woodland Hastings, a co-author on the current study, and his colleague Margaret Fogel. They hypothesized that proton channels helped trigger the flash by activating luciferase, an enzyme that helps produce luminescence. But until now, the genetic code responsible for the proton channels in dinoflagellates had not been identified, although it had been decrypted in humans, mice, algae and sea squirts.

Voltage-gated proton channels are extremely versatile. In humans, they are involved in several basic biological processes, including release of histamine in basophils, a type of white blood cell. Proton channels also play a role in the production of reactive oxygen species such as hydrogen peroxide that kill bacteria in phagocytes, another kind of white blood cell, and in maturation of sperm immediately before fertilization.

In the current study, DeCoursey and co-researchers mined the gene sequence library of a K veneficum dinoflagellate and found a gene named kHv1 that is similar to those already known to code for proton channels in other species. Not surprisingly, there were many differences in the make-up of the proton channel molecules in humans and tiny sea creatures, but the most important parts of the molecules turned out to be almost identical. Electrophysiologic tests confirmed that the genetically coded protein was indeed a proton channel – but one with an unprecedented quality.

Proton currents in K veneficum differ from all known proton currents in having large inward currents—a result of the channels opening at membrane potentials about 60 mV more negative than in other species, the researchers found.

“Vertebrate proton channels open to allow acid extrusion, while dinoflagellate proton channels open to allow proton influx into a cell’s cytoplasm, making the channel ideally suited to trigger bioluminescence,” DeCoursey explained.

When dinoflagellates floating in water are mechanically stimulated by movement, an impulse (action potential) is sent along the membrane of an internal compartment called a vacuole. Clustered along the inside of this membrane are tiny pockets called scintillons, containing a combination of luciferin and luciferase – proteins that are able to produce a light flash under the right circumstances. The inside of the vacuole compartment is very acidic and has an abundance of protons.

As the electric impulse travels along the membrane, it causes the voltage-sensitive proton channels to open. Protons then flow from the vacuole into the scintillon, where they react with the luciferase and a flash of light results.

In nonbioluminescent mixotrophic species like K veneficum, proton influx might be involved in prey digestion (e.g., signaling prey capture) or prey capture (e.g., extrusion of stinging trichocysts).

Co-investigator Susan Smith carried out a phylogenetic analysis of known Hv1 sequences, finding high sequence diversity among the single-celled species and among invertebrates. She interpreted this finding to suggest the possibility of other novel functions of Hv1 in these species.

“As in multicellular organisms, ion channels in dinoflagellates play various roles in regulating basic life functions, which make them targets for controlling dinoflagellate populations and behavior,” the authors suggested.

Future research will show whether targeting proton channels might give us a handle on controlling dinoflagellate blooms that cause deadly red tides and are responsible for massive fresh kills. Certain dinoflagellate species produce some of the most deadly poisons known, such as saxitoxin, a neurotoxin 100,000 times more potent than cocaine. Paralytic shellfish poisoning occurs in humans who eat shellfish that have consumed toxic dinoflagellates.

In addition to DeCoursey, Smith (Emory School of Medicine) and Hastings (Harvard University), the authors of this paper include Deri Morgan, Boris Musset and Vladimir V. Cherny of Rush University Medical School, and Allen R. Place of the University of Maryland Center for Environmental Sciences.

Deb Song | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>