Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of genetic mutation in Leigh syndrome

13.08.2009
Researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University have discovered a genetic mutation underlying late-onset Leigh syndrome, a rare inherited metabolic disorder characterized by the degeneration of the central nervous system.

The study published in Nature Genetics, provides vital insights into the cell biology of this neurological disorder and will lead to the development of diagnostic and predictive tests allowing for family and genetic counseling.

Leigh syndrome usually begins in early childhood and is caused by genetic mutations which result in mitochondrial dysfunction. Mitochondria are compartments in the cell which have their own DNA and function to supply energy to the body. Damage and dysfunction to mitochondrial DNA is a factor in more than 40 types of metabolic diseases and disorders, including Leigh syndrome. The first signs of the disorder are often poor sucking ability, loss of head control, and loss of acquired motor skills or movement. As the disorder progresses, symptoms may also include generalized weakness, lack of muscle tone, episodes of lactic acidosis (the body becomes more acidic than normal) and breathing problems. Death usually occurs within a few years. In rare cases, "late onset" Leigh syndrome begins during adolescence or early adulthood and progresses more slowly than the classical form. Currently, there is no cure and treatment is limited and not very effective.

"Defects in the protein production machinery, or translation, are among the most common causes of mitochondrial disease," says Dr. Eric Shoubridge, neuroscientist at The Neuro and lead investigator in the study, "and the mechanisms that regulate translation have until now remained largely unknown."

"Using molecular biological techniques and DNA analysis, we were able to pin point a mutation in the TACO1 gene which encodes a translational activator important for the proper production of a protein called COX1. This study is also the first to identify a protein of this nature in humans.COX1 is a critical component of one of the enzymes in the energy production pathway in cells, and disruptions in COX1 production, lead to loss of enzyme activity and the symptoms in Leigh Syndrome."

Researchers in Dr. Shoubridge's lab at The Neuro were the first to discover the gene implicated in the most common form of Leigh syndrome and are now studying various forms of the disease. This includes the French-Canadian form common in the Saguenay-Lac St-Jean region of Quebec which is associated with a different genetic mutation, but the same biochemical defect, and similar presentation to the form investigated in this study. Neuro researchers are also collaborating on Le Grand Defi led by Pierre Lavoie, an initiative to raise awareness and funds for research into the disease.

This study was funded in part by a grant from the Canadian Institutes of Health Research.

About the Montreal Neurological Institute and Hospital
Celebrating 75 years
The Montreal Neurological Institute and Hospital (The Neuro) is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, please visit www.mni.mcgill.ca.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>