Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of genetic mechanism allowing potato cultivation in northern latitudes

07.03.2013
An international team of scientists headed by Wageningen University, part of Wageningen UR, has discovered a genetic mechanism which allows potato plants to develop tubers during the long days of spring and summer in northern latitudes.

Wild potatoes, which originate in the Andes of South America, were brought to Europe by Spanish sailors in the late 16th century. Naturally occurring near the Equator, Andean potatoes develop tubers on days which are relatively shorter than those in high latitude summer.

Newly discovered mutations in a single potato gene are likely to have contributed to the widespread success of the potato, which is the third most important food crop in the world today.

Although the potato was probably domesticated as long as 10,000 years ago, the distribution of this crop plant was initially restricted to farming communities in what are today Chile, Bolivia and Peru. Only after the Spanish conquest was the potato imported to Europe.

Since the European growing season of spring and summer is characterised by long days and short nights, native South American potato varieties would only begin making tubers in autumn, when the days last 12 hours or less. However, modern potato varieties show a wide variation in the timing of tuber formation, with early varieties starting as early as April.

The mutations in the newly discovered regulator of tuber formation allow potatoes to escape the original short day regulation mechanism suited to the Andes, so that potatoes can grow and be cultivated in northern Europe and other northern latitudes throughout the world.

The team of scientists, headed by Wageningen UR Plant Breeding, has published its findings on the gene allowing potato to grow and flourish far from its Andean origins in the international scientific journal Nature. The authors also describe a variety of mutations in the tuber formation regulator gene which occur in different combinations in modern potato cultivars, giving rise to early, medium and late varieties, depending on the combination of the gene variants present in the tetraploid crop. Knowledge of the genes underlying the mechanism of early development will allow plant breeders to tailor new potato varieties to various geographic locations.

The research was co funded by the European Union, Technology Foundation STW and Wageningen UR.

Wageningen University is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Erik Toussaint | Meltwater Press
Further information:
http://www.wageningenur.nl

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>