Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of genetic mechanism allowing potato cultivation in northern latitudes

07.03.2013
An international team of scientists headed by Wageningen University, part of Wageningen UR, has discovered a genetic mechanism which allows potato plants to develop tubers during the long days of spring and summer in northern latitudes.

Wild potatoes, which originate in the Andes of South America, were brought to Europe by Spanish sailors in the late 16th century. Naturally occurring near the Equator, Andean potatoes develop tubers on days which are relatively shorter than those in high latitude summer.

Newly discovered mutations in a single potato gene are likely to have contributed to the widespread success of the potato, which is the third most important food crop in the world today.

Although the potato was probably domesticated as long as 10,000 years ago, the distribution of this crop plant was initially restricted to farming communities in what are today Chile, Bolivia and Peru. Only after the Spanish conquest was the potato imported to Europe.

Since the European growing season of spring and summer is characterised by long days and short nights, native South American potato varieties would only begin making tubers in autumn, when the days last 12 hours or less. However, modern potato varieties show a wide variation in the timing of tuber formation, with early varieties starting as early as April.

The mutations in the newly discovered regulator of tuber formation allow potatoes to escape the original short day regulation mechanism suited to the Andes, so that potatoes can grow and be cultivated in northern Europe and other northern latitudes throughout the world.

The team of scientists, headed by Wageningen UR Plant Breeding, has published its findings on the gene allowing potato to grow and flourish far from its Andean origins in the international scientific journal Nature. The authors also describe a variety of mutations in the tuber formation regulator gene which occur in different combinations in modern potato cultivars, giving rise to early, medium and late varieties, depending on the combination of the gene variants present in the tetraploid crop. Knowledge of the genes underlying the mechanism of early development will allow plant breeders to tailor new potato varieties to various geographic locations.

The research was co funded by the European Union, Technology Foundation STW and Wageningen UR.

Wageningen University is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Erik Toussaint | Meltwater Press
Further information:
http://www.wageningenur.nl

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>