Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new genes will help childhood arthritis treatment

23.04.2013
Scientists from The University of Manchester have identified 14 new genes which could have important consequences for future treatments of childhood arthritis.

Scientists Dr Anne Hinks, Dr Joanna Cobb and Professor Wendy Thomson, from the University’s Arthritis Research UK Epidemiology Unit, whose work is published in Nature Genetics yesterday (21 April), looked at DNA extracted from blood and saliva samples of 2,000 children with childhood arthritis and compared these to healthy people.

Principal Investigator Professor Thomson, who also leads the Inflammatory Arthritis in Children theme at the National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, said: “This study brought together an international group of scientists from around the world and is the largest investigation into the genetics of childhood arthritis to date.”

Childhood arthritis affects one in 1,000 in the UK. It is caused by a combination of genetic and environmental risk factors, however until recently very little was known about the genes that are important in developing this disease – only three were previously known.

Dr Hinks, joint lead author of the study, said the findings were a significant breakthrough for understanding more about the biology of the disease and this might help identify novel therapies for the disease. "Childhood arthritis, also known as juvenile idiopathic arthritis (JIA), is a specific type of arthritis quite separate from types found in adults and there's been only a limited amount of research into this area in the past,” she said. "This study set out to look for specific risk factors. To identify these 14 genetic risk factors is quite a big breakthrough. It will help us to understand what's causing the condition, how it progresses and then to potentially develop new therapies.”

The study may help to predict which children need specific treatment earlier and allow health workers to better control their pain management, quality of life and long-term outcome. Currently 30 per cent of children with the disease continue to suffer from arthritis in adulthood.

Dr Cobb, joint lead author, added: “There are lots of different forms of childhood arthritis so identifying the markers will help us understand a little bit more about the disease process. It will also help to categorise children with JIA into sub-types dependent on which genes they have and allow us to determine the best course of treatment.”

The study which took two years to complete, will ultimately help clinicians to better manage children with the disease and give potential to develop new therapies.

Professor Alan Silman, medical director of Arthritis Research UK who part funded the work, said: “We have known for some time that there is a strong genetic contribution to a child’s risk of developing JIA, however previously only three genetic risk factors had been identified. This study is the largest genetic investigation of JIA to date and has identified 14 new risk regions, adding a significant amount to our knowledge of the genetic basis of this disorder. Further work is now required to investigate each of these regions in more detail, to enable us to understand how they are involved in disease development and identify potential new therapeutic targets.”
For further information contact:
Alison Barbuti
Media Relations Officer
Faculty of Medical and Human Sciences, The University of Manchester
Tel. +44 (0)161 275 8383 Mobile 07887 561 318
Email: alison.barbuti@manchester.ac.uk
Arthritis Research UK funded a lot of the research. Sparks Charity for children’s health also helped to fund the research.

Arthritis Research UK is the leading authority on arthritis in the UK, conducting scientific and medical research into all types of arthritis and related musculoskeletal conditions. It is the UK’s fourth largest medical research charity and the only charity solely committed to funding high quality research into the cause, treatment and cure of arthritis.

The NIHR Manchester Musculoskeletal Biomedical Research Unit was created by the National Institute for Health Research in 2012 to move scientific breakthroughs in the laboratory, through clinical assessment into improved outcomes for adults and children with musculoskeletal disorders such as arthritis. As a partnership between Central Manchester University Hospitals NHS Foundation Trust and The University of Manchester, the Biomedical Research Unit is designated as a specialist centre of excellence in musculoskeletal diseases.

The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government’s strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. The views expressed in this news release are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Alison Barbuti | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>