Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new gene could improve efficiency of molecular factories

04.11.2011
The discovery of a new gene is helping researchers at Michigan State University envision more-efficient molecular factories of the future.

A team of researchers, led by Katherine Osteryoung, MSU plant biologist, announced the discovery of Clumped Chloroplasts – a new class of proteins – in the current issue of the Proceedings of the National Academy of Sciences.

CLMP1 plays a key role in helping chloroplasts, which carry out the life-sustaining process of photosynthesis, separate when the chloroplasts divide. The newly identified proteins are also critical in the perpetuation of chloroplasts during cell division.

Green chloroplasts in plant cells are essentially molecular factories where carbon dioxide from air is used to produce sugar, food for plants. When leaves are growing, chloroplasts increase their numbers dramatically by dividing in half. A single leaf cell can end up having more than100 chloroplasts. The expanded chloroplast population boosts photosynthesis and subsequently increases the plant’s growth. CLMP1 is one of many proteins that function together like a well-oiled machine to help chloroplasts divide and multiply.

Studying mutant Arabidopsis thaliana plants that failed to produce CLMP1, Osteryoung saw that the chloroplasts had nearly completed the division process, but they failed to separate, instead remaining connected to each other through thin membranes.

"The mutant plants had chloroplasts that appeared like clusters of grapes," said Osteryoung, who was recently named an AAAS Fellow. "In normal plants, chloroplasts are separated and distributed throughout cells. This enables the chloroplasts to move freely around the cell to maximize photosynthesis. In the mutant, where the chloroplasts remain bunched together, they cannot move around as freely, which probably impairs photosynthesis. The discovery of CLMP1 helps explain how plants have evolved mechanisms to promote chloroplast division and dispersal and avoid clumping."

In normal plants, the separation and distribution of chloroplasts also helps ensure that, when cells divide, each daughter cell inherits about half of the chloroplasts. Further investigation demonstrated that CLMP1 is required for this normal inheritance of chloroplasts during cell division, she added.

Since genes closely related to CLMP1 are also present in crop plants, Osteryoung’s research could lead to improvements in corn, wheat, soybeans and other food crops.

"In the long run, this could lead to improvements in crops through breeding and/or genetic manipulation for improved chloroplast distribution," Osteryoung said.

Additional contributors to the paper included Yue Yang, MSU postdoctoral researcher, Shin-Han Shiu, MSU plant biologist, John Froehlich, MSU-DOE Plant Research Laboratory, Kathleen Imre, MSU biochemist and molecular biologist, scientists from the University of Toronto and the University of California, San Francisco, and Tiara Ahamd and Yi Liu, MSU undergraduate students.

Osteryoung's work is supported by the U.S. Department of Energy, the National Science Foundation, and MSU's AgBioResearch.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Katherine Osteryoung | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>