Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New discovery about how flowering time of plants can be controlled

Researchers at Umeå Plant Science Center in Sweden discovered, in collaboration with the Syngenta company, a previously unknown gene in sugar beets that blocks flowering. Only with the cold of winter is the gene shut off, allowing the sugar beet to blossom in its second year. The discovery of this new gene function makes it possible to control when sugar beets bloom. The new findings were recently published in the prestigious journal Science.

Scientists at Umeå Plant Science Center and the international company Syngenta, in a joint study of genetic regulation in the sugar beet, have discovered an entirely new principle for how flowering can be controlled. The study, which was co-directed by Professorn Ove Nilsson, of the Swedish University of Agricultural Sciences (SLU), and Syngenta scientist Dr. Thomas Kraft, showed that there is a gene in the sugar beet that was previously unknown.

“When we studied a gene in the sugar beet that usually stimulates blooming in other plants, we made a very surprising discovery: in the sugar beet evolution has developed a ‘sister gene’ that has taken on the exact opposite function, namely, to inhibit blossoming. For biennial sugar beets this means that they can’t flower in their first year. Once the plants have been exposed to the cold of winter at the end of the first year, the ‘gene blockade is lifted,’ and the sugar beets can bloom in their second year of life,” says Ove Nilsson about the function of the newly discovered flowering gene.

The researchers speculate that the development of the inhibiting sister gene was an important factor in enabling biennial sugar beets to evolve from an annual to a biennial plant. Furthermore, plant researchers in Umeå and Landskrona have shown that it is possible to manipulate the “flowering gene” in such a way as to leave the gene constantly “turned on,” that is, to block blooming, and thereby prevent it from being turned off after winter.

“In that way it’s possible to fully control the flowering time of the sugar beet. This enables us to develop a so-called ‘winter beet,’ that is, a sugar beet that can be planted in the autumn and then will continue to grow throughout the following growth season without blossoming,” says Thomas Kraft at Syngenta Seeds.

“A winter beet has be a high priority for sugar beet growers, since it is estimated to be able to increase the yield by about 25 percent and at the same time allow a more extended harvesting period. Traditional breeding has failed to produce such a plant. Syngenta Seeds is now going to move on to more in-depth tests of this potential new winter beet.”

The research work in this project has been primarily conducted by an industrial doctoral candidate, Pierre Pin, with funding from the Swedish Research Council and Syngenta Seeds AB.

Original publication: Pierre A. Pin, Reyes Benlloch, Dominique Bonnet, Elisabeth Wremerth-Weich, Thomas Kraft, Jan J. L. Gielen, Ove Nilsson. An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet. Science, 3 December 2010.

For more information, please contact:
Prof. Ove Nilsson (, mobile: +46 (0)70-2869082), Umeå Plant Science Center (UPSC), Swedish University of Agricultural Sciences and Umeå University, Umeå,

Dr. Thomas Kraft (, phone: +46 (0)418-437279) Syngenta Seeds AB, Landskrona,

Pressofficer Susanne Sjöberg;; +46-70 602 4281

Susanne Sjöberg | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>