Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about how flowering time of plants can be controlled

07.12.2010
Researchers at Umeå Plant Science Center in Sweden discovered, in collaboration with the Syngenta company, a previously unknown gene in sugar beets that blocks flowering. Only with the cold of winter is the gene shut off, allowing the sugar beet to blossom in its second year. The discovery of this new gene function makes it possible to control when sugar beets bloom. The new findings were recently published in the prestigious journal Science.

Scientists at Umeå Plant Science Center and the international company Syngenta, in a joint study of genetic regulation in the sugar beet, have discovered an entirely new principle for how flowering can be controlled. The study, which was co-directed by Professorn Ove Nilsson, of the Swedish University of Agricultural Sciences (SLU), and Syngenta scientist Dr. Thomas Kraft, showed that there is a gene in the sugar beet that was previously unknown.

“When we studied a gene in the sugar beet that usually stimulates blooming in other plants, we made a very surprising discovery: in the sugar beet evolution has developed a ‘sister gene’ that has taken on the exact opposite function, namely, to inhibit blossoming. For biennial sugar beets this means that they can’t flower in their first year. Once the plants have been exposed to the cold of winter at the end of the first year, the ‘gene blockade is lifted,’ and the sugar beets can bloom in their second year of life,” says Ove Nilsson about the function of the newly discovered flowering gene.

The researchers speculate that the development of the inhibiting sister gene was an important factor in enabling biennial sugar beets to evolve from an annual to a biennial plant. Furthermore, plant researchers in Umeå and Landskrona have shown that it is possible to manipulate the “flowering gene” in such a way as to leave the gene constantly “turned on,” that is, to block blooming, and thereby prevent it from being turned off after winter.

“In that way it’s possible to fully control the flowering time of the sugar beet. This enables us to develop a so-called ‘winter beet,’ that is, a sugar beet that can be planted in the autumn and then will continue to grow throughout the following growth season without blossoming,” says Thomas Kraft at Syngenta Seeds.

“A winter beet has be a high priority for sugar beet growers, since it is estimated to be able to increase the yield by about 25 percent and at the same time allow a more extended harvesting period. Traditional breeding has failed to produce such a plant. Syngenta Seeds is now going to move on to more in-depth tests of this potential new winter beet.”

The research work in this project has been primarily conducted by an industrial doctoral candidate, Pierre Pin, with funding from the Swedish Research Council and Syngenta Seeds AB.

Original publication: Pierre A. Pin, Reyes Benlloch, Dominique Bonnet, Elisabeth Wremerth-Weich, Thomas Kraft, Jan J. L. Gielen, Ove Nilsson. An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet. Science, 3 December 2010.

For more information, please contact:
Prof. Ove Nilsson (Ove.Nilsson@genfys.slu.se, mobile: +46 (0)70-2869082), Umeå Plant Science Center (UPSC), Swedish University of Agricultural Sciences and Umeå University, Umeå, www.upsc.se

Dr. Thomas Kraft (Thomas.Kraft@Syngenta.com, phone: +46 (0)418-437279) Syngenta Seeds AB, Landskrona, www.syngenta.se

Pressofficer Susanne Sjöberg; susanne.sjoberg@adm.slu.se; +46-70 602 4281

Susanne Sjöberg | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>