Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery Could Help Feed Millions

When scientist Loretta Mayer set out to alleviate diseases associated with menopause, she didn’t realize her work could lead to addressing world hunger and feeding hundreds of millions of people.

The Northern Arizona University researcher and her colleagues at NAU and the University of Arizona identified a nontoxic chemical technology that when applied to rodents, caused infertility in rats, which feast on crops intended for human consumption.

"This environmentally neutral approach, that has never been available before, will reduce the damage rice-field rats cause in countries that depend on rice as a main food supply," Mayer said.

Rodents consume or damage up to 50 percent of pre-harvest rice crops. Due to the large-scale cultivation of rice worldwide, if rice production were to increase by 10 percent, "this would feed about 380 million people a year," Mayer said. "We can easily increase rice production by 10 percent by reducing rodent fertility in half."

She said this noninvasive approach is more humane than poison, which takes several days to kill rodents and seeps into groundwater, harming other animals and possible food sources.

The sterilization technology derived from Mayer’s research, done by Patricia Hoyer and and Glenn Sipes at UofA, investigated potential damage caused to ovarian follicles in women exposed to certain chemicals in industrial settings. Of particular interest was a chemical compound known as 4-vinylcyclohexene diepoxide, or VCD, typically used in manufacturing rubber tires, polyesters and plastics.

She found that low, nontoxic doses of VCD in mice sped the menopausal process and rendered them infertile. She dubbed this new animal model of accelerated menopause "mouseopause."

Mayer and her colleagues have developed a product called ContraPest that incorporates the chemical sterilization treatment into bait. The bait is put into strategically placed stations that lure rodents into cages too small to attract or affect other animals. "No rat or mice I know can resist a little hole," she said.

ContraPest is being tested in Indonesia -- the largest producer of rice in the world, and is currently being registered for rodent-population control in Australia.

"We are testing it in Indonesia, and then our next target site will be in the Philippines. From the Philippines we go to Vietnam," Mayer said.

Scientists adapt the product to different rodent species at SenesTech, the Flagstaff-based company that grew out of Mayer’s work on the NAU campus. Named after the word senescence, meaning approaching an advanced age, the young company hopes to create a number of beneficial products.

Mayer and her team of researchers also are adapting the technology platform for population management of other animals. They are formulating a product, ChemSpay, for use in population management of wild animals such as deer, coyotes, foxes, raccoons, horses, buffalo and elk as well as cats and dogs.

"What we are doing right now is we are preparing the translation of this technology to dogs and cats. We have already completed six months of study in dogs. This could have a tremendous impact on reducing the number of animals in shelters," said Mayer noting that not only is the method a cost-effective way to avoid surgical spaying, there’s a global impact to canine management most people don’t realize.

"Dogs are huge vectors of disease throughout the world," she said. "In India, every two seconds someone is bitten by a dog. The tragedy is that every 30 minutes someone dies from rabies. If you continue to vaccinate against rabies, you won’t be able to make a dent. You have to combine rabies vaccinations with fertility control."

She hopes to address rabies problems on the rise in West Africa, India and China.

Australia hopes to put the technology to use in managing its kangaroo, wallaby and camel populations. New Zealand, Spain and the United Kingdom also are in line to put ChemSpay to use.

She said luring students to the research team was easy. "We want them involved with hands-on research and field experience," she said. "The first question I ask interested students is if they have empty passport pages they are ready to fill."


Diane Rechel | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>