Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of extremely long-lived proteins may provide insight into cell aging

06.02.2012
One of the big mysteries in biology is why cells age. Now scientists at the Salk Institute for Biological Studies report that they have discovered a weakness in a component of brain cells that may explain how the aging process occurs in the brain.

The scientists discovered that certain proteins, called extremely long-lived proteins (ELLPs), which are found on the surface of the nucleus of neurons, have a remarkably long lifespan.


This microscope image shows extremely long-lived proteins, or ELLPs, glowing green on the outside of the nucleus of a rat brain cell. DNA inside the nucleus is pictured in blue. The Salk scientists discovered that the ELLPs, which form channels through the wall of the nucleus, lasted for more than a year without being replaced. Deterioration of these proteins may allow toxins to enter the nucleus, resulting in cellular aging.
Credit: Courtesy of Brandon Toyama, Salk Institute for Biological Studies

While the lifespan of most proteins totals two days or less, the Salk Institute researchers identified ELLPs in the rat brain that were as old as the organism, a finding they reported today in Science.

The Salk scientists are the first to discover an essential intracellular machine whose components include proteins of this age. Their results suggest the proteins last an entire lifetime, without being replaced.

ELLPs make up the transport channels on the surface of the nucleus; gates that control what materials enter and exit. Their long lifespan might be an advantage if not for the wear-and-tear that these proteins experience over time. Unlike other proteins in the body, ELLPs are not replaced when they incur aberrant chemical modifications and other damage.

Damage to the ELLPs weakens the ability of the three-dimensional transport channels that are composed of these proteins to safeguard the cell's nucleus from toxins, says Martin Hetzer, a professor in Salk's Molecular and Cell Biology Laboratory, who headed the research. These toxins may alter the cell's DNA and thereby the activity of genes, resulting in cellular aging.

Funded by the Ellison Medical Foundation and the Glenn Foundation for Medical Research, Hetzer's research group is the only lab in the world that is investigating the role of these transport channels, called the nuclear pore complex (NPC), in the aging process.

Previous studies have revealed that alterations in gene expression underlie the aging process. But, until the Hetzer lab's discovery that mammals' NPCs possess an Achilles' heel that allows DNA-damaging toxins to enter the nucleus, the scientific community has had few solid clues about how these gene alterations occur.

"The fundamental defining feature of aging is an overall decline in the functional capacity of various organs such as the heart and the brain," says Hetzer. "This decline results from deterioration of the homeostasis, or internal stability, within the constituent cells of those organs. Recent research in several laboratories has linked breakdown of protein homeostasis to declining cell function."

The results that Hetzer and his team report today suggest that declining neuron function may originate in ELLPs that deteriorate as a result of damage over time.

"Most cells, but not neurons, combat functional deterioration of their protein components through the process of protein turnover, in which the potentially impaired parts of the proteins are replaced with new functional copies," says Hetzer.

"Our results also suggest that nuclear pore deterioration might be a general aging mechanism leading to age-related defects in nuclear function, such as the loss of youthful gene expression programs," he adds.

The findings may prove relevant to understanding the molecular origins of aging and such neurodegenerative disorders as Alzheimer's disease and Parkinson's disease.

In previous studies, Hetzer and his team discovered large filaments in the nuclei of neurons of old mice and rats, whose origins they traced to the cytoplasm. Such filaments have been linked to various neurological disorders including Parkinson's disease. Whether the misplaced molecules are a cause, or a result, of the disease has not yet been determined.

Also in previous studies, Hetzer and his team documented age-dependent declines in the functioning of NPCs in the neurons of healthy aging rats, which are laboratory models of human biology.

Hetzer's team includes his colleagues at the Salk Institute as well as John Yates III, a professor in the Department of Chemical Physiology of The Scripps Research Institute.

When Hetzer decided three years ago to investigate whether the NPC plays a role in initiating or contributing to the onset of aging and certain neurodegenerative diseases, some members of the scientific community warned him that such a study was too bold and would be difficult and expensive to conduct. But Hetzer was determined despite the warnings.

He adds that without foundation funding, the study would not have progressed to the point that its findings are published in a leading journal.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>