Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of DNA silencing mechanism reveals how plants protect their genome

12.05.2011
Researchers at the RIKEN Plant Science Center (PSC) have clarified a key epigenetic mechanism by which an enzyme in the model plant Arabidopsis protects cells from harmful DNA elements.

Published in the April 28th issue of the journal PLoS Genetics, the finding contributes to advancing our understanding of a broad range of biological processes in both plants and animals, opening the door to applications in cancer therapy and agriculture.

In everything from protein synthesis to gene expression to development, living cells depend critically for their survival on the successful functioning of their DNA. Certain DNA elements such as transposons, fragments of DNA that replicate within an organism's genome, can however disrupt this functioning and disable genes. To defend against such harmful elements, eukaryotic cells form inactive tightly-packed DNA called heterochromatin, whose dense structure serves to repress (“silence”) the expression of nearby gene sequences and protect the genome.

Earlier research identified the enzyme HDA6 as playing a key role in such “hetrochromatin silencing” in the model plant Arabidopsis, but the mechanism involved remained unclear. In order to clarify this mechanism, the research group investigated the involvement of HDA6 in two processes: DNA methylation, an epigenetic modification that changes the structure of DNA without altering its sequence, and the modification of histone, the main component of chromatin.

Through a genome-wide comparison, the researchers were able to show that plants with repressed HDA6 function are not able to silence harmful DNA elements, suggesting that the enzyme plays an important role in gene silencing. Further investigation revealed that HDA6 binds directly to transposons and silences their activity through specific histone modifications, and that another enzyme, the DNA methyltransferase MET1, cooperates with HDA6 in this gene silencing.
Together, the findings establish for the first time that MET1-mediated DNA methylation and HDA6-mediated histone modification work together in repressing harmful DNA elements. By shedding light on the complex interplay between these two processes, the findings provide valuable insight on how plants and animals have evolved to protect their genome from harmful DNA, contributing to applications in areas such as cancer therapy and agriculture.

For more information, please contact:
Motoaki Seki
Plant Genomic Network Research Team
RIKEN Plant Science Center
Tel: +81-(0)45-503-9587 / Fax: +81-(0)45-503-9584
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp

Reference:
To TK, Kim J-M, Matsui A, Kurihara Y, Morosawa T, et al. (2011) Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1. PLoS Genet 7(4): e1002055. doi:10.1371/journal.pgen.1002055

About the RIKEN Plant Science Center
With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Tomoko Ikawa | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>