Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about DNA repair could lead to improved cancer treatments

11.09.2013
Medical researchers at the University of Alberta have made a basic science discovery that advances the understanding of how DNA repairs itself. When DNA becomes too damaged it ultimately leads to cancer.

Faculty of Medicine & Dentistry researcher Mark Glover and his colleagues published their findings in the peer-reviewed journal, Structure (Cell Press), earlier this summer.

For years, scientists thought two key proteins involved in DNA repair operated in exactly the same way. Glover's team discovered how the proteins operate and communicate is vastly different — information that could lead to improved cancer treatments.

Glover explains that a protein known as BRCA1 acts like a hallway monitor — constantly scanning DNA for damage. At the first sign of problems, this protein figures out what kind of help is needed, and "radios" in a cleanup crew of other proteins.

A second protein, known as TopBP1, ensures that DNA can copy itself when needed. When this process stalls due to DNA damage, this protein also calls in a cleanup crew. But Glover likens its method of communication to tweets, rather than radio.

"The two proteins may be related and look very similar, but their roles and the way they communicate are in fact very different, which was surprising to us," Glover says. "Each protein plays a role in recognizing damaged regions of DNA, but the problem they each solve is different.

"The question now is how can we use this information to try to improve cancer therapies? Could we temporarily knock out cancer DNA's ability to repair itself from radiation damage? Could we administer radiation at a point that prevents cancer DNA from copying itself? Could we inhibit the activity of proteins that are normally trying to run around and fix the damage?

"Maybe some of these ideas could ultimately translate into less radiation or chemotherapy needed for patients, if the treatment can be more targeted," says Glover, who works in the Department of Biochemistry.

His team is continuing its research in this area, and wants to learn more about the role of the TopBP1 protein and why it favours communicating with a specific protein. They also want to conduct tests in their lab to see if the use of certain medications could alter the way these proteins work in a way that could result in new or improved cancer treatments.

Glover's lab members make 3-D images of proteins, making it easier to understand and see how proteins work.

The research was funded by the Canadian Cancer Society and the National Institutes of Health.

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: 3-D image DNA TopBP1 cancer treatments key protein

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>