Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about DNA repair could lead to improved cancer treatments

11.09.2013
Medical researchers at the University of Alberta have made a basic science discovery that advances the understanding of how DNA repairs itself. When DNA becomes too damaged it ultimately leads to cancer.

Faculty of Medicine & Dentistry researcher Mark Glover and his colleagues published their findings in the peer-reviewed journal, Structure (Cell Press), earlier this summer.

For years, scientists thought two key proteins involved in DNA repair operated in exactly the same way. Glover's team discovered how the proteins operate and communicate is vastly different — information that could lead to improved cancer treatments.

Glover explains that a protein known as BRCA1 acts like a hallway monitor — constantly scanning DNA for damage. At the first sign of problems, this protein figures out what kind of help is needed, and "radios" in a cleanup crew of other proteins.

A second protein, known as TopBP1, ensures that DNA can copy itself when needed. When this process stalls due to DNA damage, this protein also calls in a cleanup crew. But Glover likens its method of communication to tweets, rather than radio.

"The two proteins may be related and look very similar, but their roles and the way they communicate are in fact very different, which was surprising to us," Glover says. "Each protein plays a role in recognizing damaged regions of DNA, but the problem they each solve is different.

"The question now is how can we use this information to try to improve cancer therapies? Could we temporarily knock out cancer DNA's ability to repair itself from radiation damage? Could we administer radiation at a point that prevents cancer DNA from copying itself? Could we inhibit the activity of proteins that are normally trying to run around and fix the damage?

"Maybe some of these ideas could ultimately translate into less radiation or chemotherapy needed for patients, if the treatment can be more targeted," says Glover, who works in the Department of Biochemistry.

His team is continuing its research in this area, and wants to learn more about the role of the TopBP1 protein and why it favours communicating with a specific protein. They also want to conduct tests in their lab to see if the use of certain medications could alter the way these proteins work in a way that could result in new or improved cancer treatments.

Glover's lab members make 3-D images of proteins, making it easier to understand and see how proteins work.

The research was funded by the Canadian Cancer Society and the National Institutes of Health.

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: 3-D image DNA TopBP1 cancer treatments key protein

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>