Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery could help to develop drugs for organ transplant and cancer patients

Loyola researchers are reporting surprising findings about a molecule that helps ramp up the immune system in some cases and suppress it in others.

The finding eventually could lead to new drugs to regulate the immune system by, for example, revving it up to attack tumor cells or tamping it down to prevent the rejection of transplanted organs.

The study is published online ahead of print in the Journal of Immunology. Senior author is Makio Iwashima, PhD, an associate professor in the Department of Microbiology & Immunology of Loyola University Chicago Stritch School of Medicine. Co-authors are Robert Love, MD, a professor in the Departments of Thoracic & Cardiovascular Surgery and Microbiology & Immunology and one of the world's leading lung transplant surgeons, and first author Mariko Takami, PhD, of the Department of Microbiology & Immunology.

The immune system relies on a balancing act between two types of cells. Effector cells attack tumor cells and cells infected by viruses or bacteria. Regulatory cells suppress the immune system so that it does not attack healthy tissue. If effector cells are too active, an individual can suffer autoimmune disorders such as lupus, Type 1 diabetes and multiple sclerosis. But if regulatory cells are too active, the immune system will not be aggressive enough to protect the individual from germs and cancer.

The study involved an immune system molecule called transforming growth factor beta (TGF-â). TGF-â is known to be a powerful regulator of the immune response -- generally suppressing the strength of the response. In this study, however, Loyola researchers demonstrated that TGF-â can amplify the immune response and result in a more effective targeted response under specific conditions.

"TGF-â is a double-edged sword," Iwashima said. "It augments immune system reactions but does not determine what direction they will take. Depending on conditions, these reactions can either activate or suppress the immune system."

The study involved mouse cells grown ex vivo in laboratory dishes. The next steps will be to study TGF-â in human cells and in animal models. Understanding the dual role of TGF-â could help in the development of drugs to either activate or suppress the immune system, as needed, Iwashima said.

The study was supported by the National Institutes of Health and the Van Kampen Cardiovascular Research Fund.

Jim Ritter | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>