Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help to develop drugs for organ transplant and cancer patients

16.04.2012
Loyola researchers are reporting surprising findings about a molecule that helps ramp up the immune system in some cases and suppress it in others.

The finding eventually could lead to new drugs to regulate the immune system by, for example, revving it up to attack tumor cells or tamping it down to prevent the rejection of transplanted organs.

The study is published online ahead of print in the Journal of Immunology. Senior author is Makio Iwashima, PhD, an associate professor in the Department of Microbiology & Immunology of Loyola University Chicago Stritch School of Medicine. Co-authors are Robert Love, MD, a professor in the Departments of Thoracic & Cardiovascular Surgery and Microbiology & Immunology and one of the world's leading lung transplant surgeons, and first author Mariko Takami, PhD, of the Department of Microbiology & Immunology.

The immune system relies on a balancing act between two types of cells. Effector cells attack tumor cells and cells infected by viruses or bacteria. Regulatory cells suppress the immune system so that it does not attack healthy tissue. If effector cells are too active, an individual can suffer autoimmune disorders such as lupus, Type 1 diabetes and multiple sclerosis. But if regulatory cells are too active, the immune system will not be aggressive enough to protect the individual from germs and cancer.

The study involved an immune system molecule called transforming growth factor beta (TGF-â). TGF-â is known to be a powerful regulator of the immune response -- generally suppressing the strength of the response. In this study, however, Loyola researchers demonstrated that TGF-â can amplify the immune response and result in a more effective targeted response under specific conditions.

"TGF-â is a double-edged sword," Iwashima said. "It augments immune system reactions but does not determine what direction they will take. Depending on conditions, these reactions can either activate or suppress the immune system."

The study involved mouse cells grown ex vivo in laboratory dishes. The next steps will be to study TGF-â in human cells and in animal models. Understanding the dual role of TGF-â could help in the development of drugs to either activate or suppress the immune system, as needed, Iwashima said.

The study was supported by the National Institutes of Health and the Van Kampen Cardiovascular Research Fund.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>