Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help to develop drugs for organ transplant and cancer patients

16.04.2012
Loyola researchers are reporting surprising findings about a molecule that helps ramp up the immune system in some cases and suppress it in others.

The finding eventually could lead to new drugs to regulate the immune system by, for example, revving it up to attack tumor cells or tamping it down to prevent the rejection of transplanted organs.

The study is published online ahead of print in the Journal of Immunology. Senior author is Makio Iwashima, PhD, an associate professor in the Department of Microbiology & Immunology of Loyola University Chicago Stritch School of Medicine. Co-authors are Robert Love, MD, a professor in the Departments of Thoracic & Cardiovascular Surgery and Microbiology & Immunology and one of the world's leading lung transplant surgeons, and first author Mariko Takami, PhD, of the Department of Microbiology & Immunology.

The immune system relies on a balancing act between two types of cells. Effector cells attack tumor cells and cells infected by viruses or bacteria. Regulatory cells suppress the immune system so that it does not attack healthy tissue. If effector cells are too active, an individual can suffer autoimmune disorders such as lupus, Type 1 diabetes and multiple sclerosis. But if regulatory cells are too active, the immune system will not be aggressive enough to protect the individual from germs and cancer.

The study involved an immune system molecule called transforming growth factor beta (TGF-â). TGF-â is known to be a powerful regulator of the immune response -- generally suppressing the strength of the response. In this study, however, Loyola researchers demonstrated that TGF-â can amplify the immune response and result in a more effective targeted response under specific conditions.

"TGF-â is a double-edged sword," Iwashima said. "It augments immune system reactions but does not determine what direction they will take. Depending on conditions, these reactions can either activate or suppress the immune system."

The study involved mouse cells grown ex vivo in laboratory dishes. The next steps will be to study TGF-â in human cells and in animal models. Understanding the dual role of TGF-â could help in the development of drugs to either activate or suppress the immune system, as needed, Iwashima said.

The study was supported by the National Institutes of Health and the Van Kampen Cardiovascular Research Fund.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>