Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in cell signaling could help fight against melanoma

11.05.2012
The human body does a great job of generating new cells to replace dead ones but it is not perfect. Cells need to communicate with or signal to each other to decide when to generate new cells. Communication or signaling errors in cells lead to uncontrolled cell growth and are the basis of many cancers.
At The University of Texas Health Science Center at Houston (UTHealth) Medical School, scientists have made a key discovery in cell signaling that is relevant to the fight against melanoma skin cancer and certain other fast-spreading tumors.

The scientists report that they have discovered why a class of drug called BRaf inhibitors that are widely used to treat melanomas do not always work and most importantly how these drugs may potentially accelerate cancer growth in certain patients. Melanoma, according to the American Cancer Society, accounts for almost 9,000 deaths each year. The scientistsf research was published online ahead of the June 5 print issue of Current Biology, which is published by Cell Press.

gThis information may aid the development of more effective anti-cancer drugs and better inform the choice of new combinations of drugs,h said John Hancock, M.B, B.Chir, Ph.D., the studyfs senior author, John S. Dunn Distinguished University Chair in Physiology and Medicine, chairman of the Department of Integrative Biology and Pharmacology and interim director of the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases at the UTHealth Medical School.

Growth signals are transmitted from a cellfs surface to the nucleus by a chain of proteins that form a signaling pathway. The command for cells to divide to generate new cells is relayed by a chain of four proteins (Ras ¨ BRaf ¨ MEK ¨ ERK). All cells have this pathway and it does an effective job of generating new cells most of time.

Problems happen when a mutation occurs in one of the first two proteins in the chain - both of which lock the signaling pathway in the gonh position. The good news is that doctors have drugs that block signaling from the second protein known as BRaf. These are the BRaf inhibitors, which are successful at treating melanomas with mutant BRaf proteins.

The not-so-good news is that doctors cannot block the signal from the first protein called Ras. Researchers therefore studied in vivo what happens when BRaf inhibitors are applied to human cancer tissues with Ras mutations.

gSurprisingly recent studies found that BRaf inhibitors do not block signaling in melanoma cells with Ras mutations. In fact, the drugs actually enhance the abnormal signaling activity. Our work now describes the mechanism for this seemingly paradoxical enhanced signaling activity,h said Kwang-jin Cho, Ph.D., the studyfs lead author and research fellow at the UTHealth Medical School.

Most melanomas isolated from patients turn out to have either a BRaf or Ras mutation but rarely have both. Ras mutations cause an otherwise normal BRaf protein to stay switched on.

gOur study also emphasizes the importance of genetic testing of melanomas before using BRaf inhibitors. Our study may also help design a better drug,h Cho said.

The study, which is titled gRaf inhibitors target Ras spatiotemporal dynamics,h was supported by the Cancer Prevention & Research Institute of Texas.

Hancock and Chofs co-authors from the UTHealth Medical School are: Jin-Hee Park, senior research assistant; Sravanthi Chigurupati, senior research assistant; Dharini van der Hoeven, Ph.D., research fellow; and Sarah J. Plowman, Ph.D., assistant professor.

Other collaborators include: Rinshi S. Kasai, Ph.D., and Akihiro Kusumi, Ph.D., Kyoto University, Japan; and Sonja J. Heidorn, Ph.D., and Richard Marais, Ph.D., Institute for Cancer Research, London.
Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uthouston.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>