Discovery of the cell's water gate may lead to new cancer drugs

The discovery, which will be published in the journal PLoS Biology, raises hopes of developing a drug that inhibits the spread and growth of tumours.

All living organisms must be able to regulate the flow of water into and out from cells, in order to maintain cell form and size. This regulation is carried out by special proteins known as “aquaporins”. These act as water channels and control the flow of water into and out from the cell.

Involved in cancer diseases

Aquaporins are found in most organisms, and are believed to be involved in several diseases, including cancer. Research on mice has shown that inhibiting the function of aquaporins can dramatically reduce the spread and growth of tumours.

Important for research

It is therefore extremely important for cancer research to increase our knowledge of aquaporins. Scientists at the University of Gothenburg have recently achieved a minor breakthrough in the field. Karin Lindkvist at the Department of Cell and Molecular Biology and Richard Neutze at the Department of Chemistry, University of Gothenburg have determined the three-dimensional structure of the yeast aquaporin. The results will be published in the journal PLoS Biology.

Highest resolution

The structure has been determined using X-ray crystallography and is the highest resolution structure that has been determined for a membrane protein. The unique high resolution has enabled the scientists to answer one of the unsolved mysteries of biology. The aquaporins in yeast have long “tails”, known as amino-terminal extensions. The function of these tails has, until now, been unknown.

“Our study shows that the amino-terminal extensions in yeast act as a gate that can be opened and closed depending on how much water the cell must release or absorb. Computer simulations and biological experiments suggest that the channel is regulated with a combination of mechanical regulation and phosphorylation”, says Karin Lindkvist.

Similar to human

Yeast cells are similar to human cells in many respects, and Karin Lindkvist's research can have applications in cancer research and other fields.

“The structure of the yeast aquaporin that we have determined can be used to create inhibitors for human aquaporins, and this may in the long term lead to drugs that slow the growth of a cancer tumour”, says Karin Lindkvist.

The article will be published in PloS Biology on 16 June.

Contact:
Karin Lindkvist, Department of Cell and Molecular Biology, University of Gothenburg
karin.lindkvist@cmb.gu.se
Mobile: 46 (0)734 222786
Work telephone: 46 (0)31 786 3912

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors