Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the cell's water gate may lead to new cancer drugs

17.06.2009
The flow of water into and out from the cell may play a crucial role in several types of cancer. Scientists at the University of Gothenburg, Sweden, have now found the gate that regulates the flow of water into yeast cells.

The discovery, which will be published in the journal PLoS Biology, raises hopes of developing a drug that inhibits the spread and growth of tumours.

All living organisms must be able to regulate the flow of water into and out from cells, in order to maintain cell form and size. This regulation is carried out by special proteins known as "aquaporins". These act as water channels and control the flow of water into and out from the cell.

Involved in cancer diseases

Aquaporins are found in most organisms, and are believed to be involved in several diseases, including cancer. Research on mice has shown that inhibiting the function of aquaporins can dramatically reduce the spread and growth of tumours.

Important for research

It is therefore extremely important for cancer research to increase our knowledge of aquaporins. Scientists at the University of Gothenburg have recently achieved a minor breakthrough in the field. Karin Lindkvist at the Department of Cell and Molecular Biology and Richard Neutze at the Department of Chemistry, University of Gothenburg have determined the three-dimensional structure of the yeast aquaporin. The results will be published in the journal PLoS Biology.

Highest resolution

The structure has been determined using X-ray crystallography and is the highest resolution structure that has been determined for a membrane protein. The unique high resolution has enabled the scientists to answer one of the unsolved mysteries of biology. The aquaporins in yeast have long "tails", known as amino-terminal extensions. The function of these tails has, until now, been unknown.

"Our study shows that the amino-terminal extensions in yeast act as a gate that can be opened and closed depending on how much water the cell must release or absorb. Computer simulations and biological experiments suggest that the channel is regulated with a combination of mechanical regulation and phosphorylation", says Karin Lindkvist.

Similar to human

Yeast cells are similar to human cells in many respects, and Karin Lindkvist's research can have applications in cancer research and other fields.

"The structure of the yeast aquaporin that we have determined can be used to create inhibitors for human aquaporins, and this may in the long term lead to drugs that slow the growth of a cancer tumour", says Karin Lindkvist.

The article will be published in PloS Biology on 16 June.

Contact:
Karin Lindkvist, Department of Cell and Molecular Biology, University of Gothenburg
karin.lindkvist@cmb.gu.se
Mobile: 46 (0)734 222786
Work telephone: 46 (0)31 786 3912

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000130

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>