Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by Brown Researchers Could Lead to New Autism Treatment

06.02.2009
A Brown research team led by neuroscience professor Justin Fallon has discovered a structure in the brain called the Fragile X granule, which offers a potential target for treating certain kinds of autism and mental retardation. Details were published Feb. 4, 2009, in the Journal of Neuroscience.

A Brown University research team has discovered something in the brain that could serve as a target for future autism and mental retardation treatments.

Discovery of the novel Fragile X granule is detailed in the Feb. 4, 2009, issue of the Journal of Neuroscience. This finding opens a new line of research about potential treatments for autism, a neurological disorder that strikes young children and can impair development of social interaction and communication.

“If you are going to treat the disease you need to be able to target the defective elements,” said Justin Fallon, professor of neuroscience at Brown. “The Fragile X granule offers such a target.”

Fallon is senior author of the paper titled “The FXG: A presynaptic Fragile X granule expressed in a subset of developing brain circuits.” Two postdoctoral students at Brown served as lead authors: Sean Christie and Michael Atkins. James Schwob, a researcher from Tufts University Medical School, also participated.

Autism affects as many as 1.5 million Americans, and the number is increasing, according to the Autism Society of America. It is estimated that 1 in 150 births involve children with some form of autism.

Autism can be caused by a variety of genetic factors, but Fallon’s lab focused on one particular area — the Fragile X protein. If that protein is mutated, it leads to Fragile X syndrome, which causes mental retardation and is often accompanied by autism.

There is growing recognition in the field that autism and mental retardation are diseases of the synapse, the basic unit of information exchange and storage in the brain. Many groups have extensively studied the role of the Fragile X protein in the post-synaptic, or receiving side of synaptic connections. This was a starting point for the research conducted by Fallon’s team in their study of the Fragile X protein and synaptic connections in healthy mice.

By examining specially prepared sections of mouse brain tissue with high-powered light and electron microscopes, Fallon’s team made a number of determinations. First, they showed that Fragile X exists at the pre-synaptic, or sending side of the synapse. This is an area that had not been widely studied.

“For over 25 years the field has focused almost exclusively on the post-synaptic, receiving side,” Fallon said. “Almost no one has looked at the pre-synaptic side, as it was not thought to be involved in Fragile X.”

This discovery is important because scientists, if they are to treat Fragile X syndrome, autism or mental retardation must know where the functional defect actually is. Fallon’s research helps fill in a potential gap.

“The implication is that pre-synaptic defects could contribute to the pathology in autism in Fragile X,” Fallon said.

Even more significantly, Fallon and his lab learned that Fragile X protein is only present in a small fraction of what are known as pre-synaptic specializations. The pre-synaptic Fragile X protein also turned out to be present in microscopic granules, which look like tiny pebbles under a high-powered microscope. Understanding the Fragile X granule is important in this context because the finding could lead to more targeted treatments.

Further research is needed, but Fallon’s lab hypothesizes that the granules contain multiple RNAs, or sets of genetic information to help modify the synapse during learning and memory. If their theory is proven correct, the granules might serve as pinpoint targets for eventual drug treatments of autism.

The scientists’ efforts date to 2005; their finding of the Fragile X granules was “serendipity,” Fallon said. The original focus was on developing an improved method for visualizing where Fragile X protein sits in the brain. That new visualization method led to the discovery of the granules.

The work was supported by the National Institutes of Health and FRAXA, the Fragile X Research Foundation.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>