Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by Brown Researchers Could Lead to New Autism Treatment

06.02.2009
A Brown research team led by neuroscience professor Justin Fallon has discovered a structure in the brain called the Fragile X granule, which offers a potential target for treating certain kinds of autism and mental retardation. Details were published Feb. 4, 2009, in the Journal of Neuroscience.

A Brown University research team has discovered something in the brain that could serve as a target for future autism and mental retardation treatments.

Discovery of the novel Fragile X granule is detailed in the Feb. 4, 2009, issue of the Journal of Neuroscience. This finding opens a new line of research about potential treatments for autism, a neurological disorder that strikes young children and can impair development of social interaction and communication.

“If you are going to treat the disease you need to be able to target the defective elements,” said Justin Fallon, professor of neuroscience at Brown. “The Fragile X granule offers such a target.”

Fallon is senior author of the paper titled “The FXG: A presynaptic Fragile X granule expressed in a subset of developing brain circuits.” Two postdoctoral students at Brown served as lead authors: Sean Christie and Michael Atkins. James Schwob, a researcher from Tufts University Medical School, also participated.

Autism affects as many as 1.5 million Americans, and the number is increasing, according to the Autism Society of America. It is estimated that 1 in 150 births involve children with some form of autism.

Autism can be caused by a variety of genetic factors, but Fallon’s lab focused on one particular area — the Fragile X protein. If that protein is mutated, it leads to Fragile X syndrome, which causes mental retardation and is often accompanied by autism.

There is growing recognition in the field that autism and mental retardation are diseases of the synapse, the basic unit of information exchange and storage in the brain. Many groups have extensively studied the role of the Fragile X protein in the post-synaptic, or receiving side of synaptic connections. This was a starting point for the research conducted by Fallon’s team in their study of the Fragile X protein and synaptic connections in healthy mice.

By examining specially prepared sections of mouse brain tissue with high-powered light and electron microscopes, Fallon’s team made a number of determinations. First, they showed that Fragile X exists at the pre-synaptic, or sending side of the synapse. This is an area that had not been widely studied.

“For over 25 years the field has focused almost exclusively on the post-synaptic, receiving side,” Fallon said. “Almost no one has looked at the pre-synaptic side, as it was not thought to be involved in Fragile X.”

This discovery is important because scientists, if they are to treat Fragile X syndrome, autism or mental retardation must know where the functional defect actually is. Fallon’s research helps fill in a potential gap.

“The implication is that pre-synaptic defects could contribute to the pathology in autism in Fragile X,” Fallon said.

Even more significantly, Fallon and his lab learned that Fragile X protein is only present in a small fraction of what are known as pre-synaptic specializations. The pre-synaptic Fragile X protein also turned out to be present in microscopic granules, which look like tiny pebbles under a high-powered microscope. Understanding the Fragile X granule is important in this context because the finding could lead to more targeted treatments.

Further research is needed, but Fallon’s lab hypothesizes that the granules contain multiple RNAs, or sets of genetic information to help modify the synapse during learning and memory. If their theory is proven correct, the granules might serve as pinpoint targets for eventual drug treatments of autism.

The scientists’ efforts date to 2005; their finding of the Fragile X granules was “serendipity,” Fallon said. The original focus was on developing an improved method for visualizing where Fragile X protein sits in the brain. That new visualization method led to the discovery of the granules.

The work was supported by the National Institutes of Health and FRAXA, the Fragile X Research Foundation.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>