Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Discovery in Autism-Related Disorder Reveals Key Mechanism in Brain Development and Disease

15.01.2013
Findings published in Nature Neuroscience explain how Timothy syndrome mutation causes wiring defects associated with cognitive impairment

A new finding in neuroscience for the first time points to a developmental mechanism linking the disease-causing mutation in an autism-related disorder, Timothy syndrome, and observed defects in brain wiring, according to a study led by scientist Ricardo Dolmetsch and published online yesterday in Nature Neuroscience. These findings may be at the heart of the mechanisms underlying intellectual disability and many other brain disorders.

The present study reveals that a mutation of the disease-causing gene throws a key process of neurodevelopment into reverse. That is, the mutation underlying Timothy syndrome causes shrinkage, rather than growth, of the wiring needed for the development of neural circuits that underlie cognition.

“In addition to the implications for autism, what’s really exciting is that we now have a way to get at the core mechanisms tying genes and environmental influences to development and disease processes in the brain,” said Dolmetsch, Senior Director of Molecular Networks at the Allen Institute for Brain Science.

“Imagine what we can learn if we do this hundreds and hundreds of times for many different human genetic variations in a large-scale, systematic way. That’s what we are doing now at the Allen Institute,” Dolmetsch continued.

In normal brain development, brain activity causes branches emanating from neural cells to stretch or expand. In cells with the mutation, these branched extensions, called dendrites, instead retract in response to neural activity, according to this study. This results in abnormal brain circuitry favoring connections with nearby neurons rather than farther-reaching connections. Further, the study identified a previously unknown mode of signaling to uncover the chemical pathway that causes the dendritic retraction.

This finding may have wide-reaching implications in neuroscience, as impaired dendrite formation is a common feature of many neurodevelopmental disorders. Further, the same gene has been implicated in other disorders including bipolar disorder and schizophrenia.

Under Dolmetsch’s leadership, the Molecular Networks program at the Allen Institute, one of three major new initiatives announced by the Institute last March, is using similar methods on a grand scale. The Institute is probing a large number of human genetic variations and many pathways in the brain to untangle the cellular mechanisms of neurodevelopment and disease. In addition to identifying the molecular and environmental rules that shape how the brain is built, the program will create new research tools and data sets that it will share publicly with the global research community.

Timothy syndrome is a neurodevelopmental disorder associated with autism spectrum disorders and caused by a mutation in a single gene. In addition to autism, it is also characterized by cardiac arrhythmias, webbed fingers and toes, and hypoglycemia, and often leads to death in early childhood.

The study was led by Ricardo Dolmetsch with colleagues at Stanford University.

Citation
Krey, JF et al. (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nature Neuroscience, advance online publication January 13, 2013.
About the Allen Institute for Brain Science
The Allen Institute for Brain Science (http://www.alleninstitute.org) is an independent nonprofit medical research organization dedicated to accelerating the understanding of how the human brain works in health and disease. Using a big science approach, the Allen Institute generates useful public resources used by researchers and organizations around the globe, drives technological and analytical advances, and discovers fundamental brain properties through integration of experiments, modeling and theory. Launched in 2003 with a seed contribution from founder and philanthropist Paul G. Allen, the Allen Institute is supported by a diversity of government, foundation and private funds to enable its projects. Given the Institute’s achievements, Mr. Allen committed an additional $300 million in 2012 for the first four years of a ten-year plan to further propel and expand the Institute’s scientific programs, bringing his total commitment to date to $500 million. The Allen Institute’s data and tools are publicly available online at http://www.brain-map.org.

Heather Platisha | Newswise
Further information:
http://www.brain-map.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>