Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Discovery in Autism-Related Disorder Reveals Key Mechanism in Brain Development and Disease

15.01.2013
Findings published in Nature Neuroscience explain how Timothy syndrome mutation causes wiring defects associated with cognitive impairment

A new finding in neuroscience for the first time points to a developmental mechanism linking the disease-causing mutation in an autism-related disorder, Timothy syndrome, and observed defects in brain wiring, according to a study led by scientist Ricardo Dolmetsch and published online yesterday in Nature Neuroscience. These findings may be at the heart of the mechanisms underlying intellectual disability and many other brain disorders.

The present study reveals that a mutation of the disease-causing gene throws a key process of neurodevelopment into reverse. That is, the mutation underlying Timothy syndrome causes shrinkage, rather than growth, of the wiring needed for the development of neural circuits that underlie cognition.

“In addition to the implications for autism, what’s really exciting is that we now have a way to get at the core mechanisms tying genes and environmental influences to development and disease processes in the brain,” said Dolmetsch, Senior Director of Molecular Networks at the Allen Institute for Brain Science.

“Imagine what we can learn if we do this hundreds and hundreds of times for many different human genetic variations in a large-scale, systematic way. That’s what we are doing now at the Allen Institute,” Dolmetsch continued.

In normal brain development, brain activity causes branches emanating from neural cells to stretch or expand. In cells with the mutation, these branched extensions, called dendrites, instead retract in response to neural activity, according to this study. This results in abnormal brain circuitry favoring connections with nearby neurons rather than farther-reaching connections. Further, the study identified a previously unknown mode of signaling to uncover the chemical pathway that causes the dendritic retraction.

This finding may have wide-reaching implications in neuroscience, as impaired dendrite formation is a common feature of many neurodevelopmental disorders. Further, the same gene has been implicated in other disorders including bipolar disorder and schizophrenia.

Under Dolmetsch’s leadership, the Molecular Networks program at the Allen Institute, one of three major new initiatives announced by the Institute last March, is using similar methods on a grand scale. The Institute is probing a large number of human genetic variations and many pathways in the brain to untangle the cellular mechanisms of neurodevelopment and disease. In addition to identifying the molecular and environmental rules that shape how the brain is built, the program will create new research tools and data sets that it will share publicly with the global research community.

Timothy syndrome is a neurodevelopmental disorder associated with autism spectrum disorders and caused by a mutation in a single gene. In addition to autism, it is also characterized by cardiac arrhythmias, webbed fingers and toes, and hypoglycemia, and often leads to death in early childhood.

The study was led by Ricardo Dolmetsch with colleagues at Stanford University.

Citation
Krey, JF et al. (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nature Neuroscience, advance online publication January 13, 2013.
About the Allen Institute for Brain Science
The Allen Institute for Brain Science (http://www.alleninstitute.org) is an independent nonprofit medical research organization dedicated to accelerating the understanding of how the human brain works in health and disease. Using a big science approach, the Allen Institute generates useful public resources used by researchers and organizations around the globe, drives technological and analytical advances, and discovers fundamental brain properties through integration of experiments, modeling and theory. Launched in 2003 with a seed contribution from founder and philanthropist Paul G. Allen, the Allen Institute is supported by a diversity of government, foundation and private funds to enable its projects. Given the Institute’s achievements, Mr. Allen committed an additional $300 million in 2012 for the first four years of a ten-year plan to further propel and expand the Institute’s scientific programs, bringing his total commitment to date to $500 million. The Allen Institute’s data and tools are publicly available online at http://www.brain-map.org.

Heather Platisha | Newswise
Further information:
http://www.brain-map.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>