Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of an anti-inflammatory substance

09.11.2010
Biochemists at Kiel University, along with international scientists, have identified an important messenger in the immune system

The messenger interleukin-27 plays an important role when the human body blocks inflammations. This was discovered by an international research team, of which the Kiel Professors Joachim Grötzinger and Stefan Rose-John, as well as the doctoral candidate, Björn Spudy, are a part of.

The research findings of the scientists from Kiel, the US and Great Britain were published yesterday, Sunday (7 November 2010), in the online advance edition of Nature Immunology.

The human immune system reacts to bodily injuries and infections with inflammation. This is important for the healing process, but can result in harmful effects if it becomes chronic. Inflammation is triggered by messengers such as the cytokine interleukin-6 (IL-6). This peptide hormone latches on to special receptor molecules on cells and compels inflammation.

"We observed that another cytokine, interleukin-27, can counteract this effect", explained Professor Joachim Grötzinger, from the Institute of Biochemistry at Kiel University. "IL-27 latches on to the same receptors as IL-6 and thus inhibits the inflammatory reaction." The Kiel biochemists were able to support the international research team with their knowledge of IL-6 in particular. According to Grötzinger, "We have dedicated ourselves to this topic for over 20 years". Professor Stefan Rose-John added: "We hope that these fundamental findings will one day be able to aid the healing of chronic inflammatory diseases".

The Christian-Albrechts-Universität zu Kiel (CAU) has proven international expertise as a North German research university in the field of Life Sciences. This fact is emphasised by the cluster of excellence Inflammation at Interfaces, with which the CAU was successful in the first round of the national Excellence Initiative, together with the University of Lübeck and the Research Center Borstel. The Collaborative Research Centre (CRC) 877, "Proteolysis as a Regulatory Event in Pathophysiology", whose spokesperson is Rose-John and in which Grötzinger is also involved, substantiates the competence of Kiel in the field of Life Sciences as well. CRC 877 deals with signalling pathways within and between cells, which are triggered by the fission of proteins.

Original publication:
A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nature Immunology 2010, DOI: 10.1038/ni.1957
A photo on this topic is available for download under:
http://www.uni-kiel.de/download/pm/2010/2010-164-1.jpg
Caption: Kiel biochemists Professor Joachim Grötzinger, Björn Spudy and Professor Stefan Rose-John (left to right) are familiar with the human immune system. Together with researchers from the US and Great Britain, they have identified a messenger which inhibits inflammations.

Copyright: CAU, Photo: Desel

Contact:
Institute of Biochemistry
Christian-Albrechts-Universität zu Kiel
Prof. Dr. Joachim Grötzinger
Tel.: +49 (0)431/880-1686
E-mail: jgroetzinger@biochem.uni-kiel.de
Prof. Dr. Stefan Rose-John
Tel.: +49 (0)431/880-3336
E-mail: rosejohn@biochem.uni-kiel.de

Dr. Joachim Groetzinger | EurekAlert!
Further information:
http://www.uni-kiel.de

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>