Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of algae's toxic hunting habits could help curb fish kills

22.01.2010
A microbe commonly found in the Chesapeake Bay and other waterways emits a poison not just to protect itself but to stun and immobilize the prey it plans to eat, a team of researchers from four universities has discovered. The findings about algae linked to massive fish kills could lead to new ways to slow the growth of these tiny but toxic marine creatures.

The researchers studied the behavior of the algal cell Karlodinium veneficum, known as a dinoflagellate and found in estuaries worldwide. Each year millions of dollars are spent on measures to control dinoflagellates around the globe. This particular species is known to release a substance called karlotoxin, which is extremely damaging to the gills of fish. Karlodinium veneficum has been known to form large algal blooms in the Chesapeake and elsewhere, triggering an immediate harmful impact on aquatic life, including fish kills.

"This new research opens the door to reducing bloom frequency and intensity by reducing the availability of its prey," said Allen Place of the Institute of Marine and Environmental Technology at the University of Maryland Center for Environmental Science. "As we reduce the nutrient load feeding Karlodinium's prey and bring back the bay's most prolific filter feeder, the Eastern oyster, we could essentially limit Karlodinium's ability to bloom."

Place, in whose laboratory karlotoxin was discovered and characterized, was a co-author of the new study, published this week in the online Early Edition of the Proceedings of the National Academy of Sciences. Other researchers involved in the study came from the University of Minnesota, The Johns Hopkins University and the University of Hawaii.

"This is a major environmental problem, but we didn't know why these microbes were producing the toxins in the first place," said Joseph Katz, the William F. Ward Sr. Professor in the Department of Mechanical Engineering at Johns Hopkins and a co-author of the paper. "Some people thought they were just using the toxins to scare away other predators and protect themselves. But with this new research, we've provided clear evidence that this species of K. veneficum is using the toxin to stun and capture its prey."

Historically, scientists have found it difficult to study the behavior of these tiny animals because the single-cell creatures can quickly swim out of a microscope's shallow field of focus. But in recent years this problem has been solved through the use of digital holographic microscopy, which can capture three-dimensional images of the troublesome microbes. The technique was pioneered by Katz.

In a study published in 2007, Katz, Place and Jian Sheng, who was Katz's doctoral student, were part of a team that reported the use of digital holographic microscopy to view the swimming behavior of K. veneficum and Pfiesteria piscicida. At the time, it appeared that K. veneficum slowed down into a "stealth mode" in order to ambush its prey while P. piscicida sped up to capture prey.

For the new paper, in which Sheng is lead author, the researchers used the same technique to more closely study the relationship between K. veneficum and its prey, a common, single-celled algal cell called a cryptophyte. They found that K. veneficum microbes release toxins to stun and immobilize their prey prior to ingestion, probably to increase the success rate of their hunt and to promote their growth.

This significantly shifts the understanding about what permits harmful algal blooms to form and grow, the researchers said. Instead of being a self-defense mechanism, the microbes' production of poison appears to be more closely related to growth through the ingestion of a "pre-packaged" food source, the cryptophyte cell, they concluded.

"In the paper, we have answered why these complicated [toxic] molecules are made in nature in the first place and identify a possible alternative mechanism causing massive bloom," said Sheng, who is now a faculty member in the University of Minnesota's Department of Aerospace Engineering and Mechanics.

Other co-authors of the PNAS paper are Edwin Malkiel, an adjunct associate research scientist in the Department of Mechanical Engineering at Johns Hopkins; and Jason E. Adolf, an assistant professor in the University of Hawaii's Department of Marine Science.

Funding for the research was provided by the National Science Foundation and the National Oceanic and Atmospheric Administration's Coastal Oceans Program.

The journal article maybe viewed online here: http://www.pnas.org/content/early/2010/01/14/0912254107.full.pdf+html.

Related links:
Joseph Katz's Web Page: http://web.jhu.edu/fluid_dynamics/index.html
Johns Hopkins Department of Mechanical Engineering: http://www.me.jhu.edu/
Jian Sheng's Web Page: http://www.aem.umn.edu/people/faculty/bio/jsheng.shtml
Allen Place's Web Page: http://www.umbi.umd.edu/comb/faculty-directory/place/

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>