Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery to aid in future treatments of third-world parasites

29.07.2009
Schistosomiasis, one of the most important of the neglected tropical diseases, is caused by infection with parasitic helminths of the genus Schistosoma.

These parasites are long lived (>10 years) and dwell within blood vessels, where they produce eggs that become the focus of intense, chronic inflammatory responses. In severe cases, this inflammation is associated with life-threatening liver disease.

No vaccine is currently available to prevent schistosomiasis. Options for treating the disease are largely limited to one drug, Praziquantel. Rates of re-infection in drug-treated individuals are high, and it is feared that widespread use may foster the emergence of drug-resistant variants, such as has seen with drug-resistant strains of tuberculosis.

The body's immune response to schistosome infection, as with all immune responses, is coordinated by cytokines, small proteins secreted by immune cells. Due to their fundamental importance, cytokine research is a significant focus of research at the Trudeau Institute. Because cytokines travel through the body to relay critical information, it is difficult to identify the cells that produce them and to learn about their role.

Trudeau investigators have devised cytokine "reporter mice" for tracking cells that produce the signature cytokine of the so-called "Th2" immune response mounted against infections with parasitic worms, interleukin-4 (IL-4).

While it was previously known that the complex mixture of proteins released by schistosome eggs induce Th2 responses and the production of IL-4, the specific molecule(s) responsible for these effects were unknown.

Research from the laboratories of Markus Mohrs of the Trudeau Institute and Gabriele Schramm of the Research Centre Borstel in Germany had previously shown that a protein called alpha-1 can support Th2 responses but is unable to initiate them.

However, new findings from an international study between Mohrs, Schramm, and Maria Yazdanbaksh of the Leiden University Medical Center in the Netherlands have now shown that omega-1, a single protein secreted from schistosome eggs, recapitulates the activities of the complex mixture in the test tube (in vitro).

Importantly, using IL-4 reporter mice, the researchers show that omega-1 alone is sufficient to generate Th2 responses in vivo. This identification of a single protein will undoubtedly aid in unlocking the molecular pathways inducing Th2 responses commonly elicited by infection with parasitic worms.

Ultimately, these novel insights will help researchers in the field like Dr. Yazdanbaksh, who, in addition to her laboratory research, also oversees studies in schistosomiasis patients in Africa.

These findings are reported in the current issue of the Journal of Experimental Medicine.

As with all basic research discoveries, incremental advances such as these may eventually lead to new treatments and therapies that will improve the day-to-day lives of the 200 million people around the globe currently afflicted by schistosomiasis. Moreover, these Th2 responses, described above in the context of worm infections, are also associated with the clinical symptoms of allergic and asthmatic disorders. Thus, understanding the immune response to infection with parasitic worms might aid in ameliorating allergy and asthma common in industrialized countries.

The Trudeau Institute is an independent, not-for-profit biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza, mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease. The research is supported by government grants and philanthropic contributions.

Brian Turner | EurekAlert!
Further information:
http://www.trudeauinstitute.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>