Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new mechanism of gene control that is associated with cancer

20.06.2011
Scientists at Memorial Sloan-Kettering Cancer Center in New York and at IRB Barcelona reveal the mechanism of action of a protein that is essential for life and is associated with disease.

Researchers headed by Joan Massagué at Memorial Sloan-Kettering Cancer Center (MSKCC) in New York and by María Macías at the Institute for Research in Biomedicine (IRB Barcelona) have identified a complex mechanism by which some proteins that are essential for life, called Smads, regulate the activity of genes associated with cancer.

The fruit of three years of intense work, the study reports on the life cycle of this protein, a process that ensures that the protein is destroyed when it has completed its function. These results have been published today in the top journal Genes & Development, which has devoted its cover to this research.

In the TGF-beta/Smad signal cascade, the hormones TGF-beta and BMP transmit information to the Smad protein in the cell nucleus in order for this molecule to stop cell division and to ensure that tissues grow in an orderly and coordinated manner. Although the TGF-beta/Smad signalling pathway has been known for over twenty years, until now it was unclear how Smads temporally controlled the activity of such important genes. “We had several pieces of the puzzle but we couldn’t put them together”, says Macías.

A number of earlier studies performed by Massagué’s lab had identified that Smads undergo phosphorylations –a kind of chemical change – in a region of the protein about which little is known. By means of biophysical and biochemical approaches, the researchers have discovered that these modifications occur in a coordinated fashion over time and are not random. “First, phosphorylations make some proteins bind to Smads in order to control the activity of target genes and later other phoshorylations cause protein bindings that lead to the destruction of Smad once this protein has completed its mission. This is the way cells prevent fatal errors”, explains Macías.

Having established the time sequence of these events, the scientists used cell and structural biology approaches –determination of the atom position in Smad proteins and other activating and destructor proteins bound to them– to confirm the results previously found. “We have been able to decipher the specificity of the binding between Smad and other proteins and to reveal the secret code that these proteins use to extract information”.

How do these proteins favour tumour cells? Massagué explains that “these signalling cascades are like the body’s pólice force. The tumour cells, in other words the delinquents, disturb these pathways and use them for their own means to grow and spread”. These pathways normally are involved in basic cell processes but when altered by mutations several diseases can appear such as cancer, congenital conditions, chronic inflammation and emphysema. These results could serve as the foundation on which to develop new clinical treatments against cancer and other diseases.

Reference article:
A Smad action-turnover switch operated by WW domain readers of a phosphoserine code. Eric Aragón, Nina Goerner, Alexia-Ileana Zaromytidou, Qiaoran Xi, Albert Escobedo, Joan Massagué, and Maria J. Macias.

Genes & Development (2011). [doi: 10.1101/gad.2060811]

Nuria Noriega | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>