Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new mechanism of gene control that is associated with cancer

20.06.2011
Scientists at Memorial Sloan-Kettering Cancer Center in New York and at IRB Barcelona reveal the mechanism of action of a protein that is essential for life and is associated with disease.

Researchers headed by Joan Massagué at Memorial Sloan-Kettering Cancer Center (MSKCC) in New York and by María Macías at the Institute for Research in Biomedicine (IRB Barcelona) have identified a complex mechanism by which some proteins that are essential for life, called Smads, regulate the activity of genes associated with cancer.

The fruit of three years of intense work, the study reports on the life cycle of this protein, a process that ensures that the protein is destroyed when it has completed its function. These results have been published today in the top journal Genes & Development, which has devoted its cover to this research.

In the TGF-beta/Smad signal cascade, the hormones TGF-beta and BMP transmit information to the Smad protein in the cell nucleus in order for this molecule to stop cell division and to ensure that tissues grow in an orderly and coordinated manner. Although the TGF-beta/Smad signalling pathway has been known for over twenty years, until now it was unclear how Smads temporally controlled the activity of such important genes. “We had several pieces of the puzzle but we couldn’t put them together”, says Macías.

A number of earlier studies performed by Massagué’s lab had identified that Smads undergo phosphorylations –a kind of chemical change – in a region of the protein about which little is known. By means of biophysical and biochemical approaches, the researchers have discovered that these modifications occur in a coordinated fashion over time and are not random. “First, phosphorylations make some proteins bind to Smads in order to control the activity of target genes and later other phoshorylations cause protein bindings that lead to the destruction of Smad once this protein has completed its mission. This is the way cells prevent fatal errors”, explains Macías.

Having established the time sequence of these events, the scientists used cell and structural biology approaches –determination of the atom position in Smad proteins and other activating and destructor proteins bound to them– to confirm the results previously found. “We have been able to decipher the specificity of the binding between Smad and other proteins and to reveal the secret code that these proteins use to extract information”.

How do these proteins favour tumour cells? Massagué explains that “these signalling cascades are like the body’s pólice force. The tumour cells, in other words the delinquents, disturb these pathways and use them for their own means to grow and spread”. These pathways normally are involved in basic cell processes but when altered by mutations several diseases can appear such as cancer, congenital conditions, chronic inflammation and emphysema. These results could serve as the foundation on which to develop new clinical treatments against cancer and other diseases.

Reference article:
A Smad action-turnover switch operated by WW domain readers of a phosphoserine code. Eric Aragón, Nina Goerner, Alexia-Ileana Zaromytidou, Qiaoran Xi, Albert Escobedo, Joan Massagué, and Maria J. Macias.

Genes & Development (2011). [doi: 10.1101/gad.2060811]

Nuria Noriega | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>