Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a new mechanism of gene control that is associated with cancer

Scientists at Memorial Sloan-Kettering Cancer Center in New York and at IRB Barcelona reveal the mechanism of action of a protein that is essential for life and is associated with disease.

Researchers headed by Joan Massagué at Memorial Sloan-Kettering Cancer Center (MSKCC) in New York and by María Macías at the Institute for Research in Biomedicine (IRB Barcelona) have identified a complex mechanism by which some proteins that are essential for life, called Smads, regulate the activity of genes associated with cancer.

The fruit of three years of intense work, the study reports on the life cycle of this protein, a process that ensures that the protein is destroyed when it has completed its function. These results have been published today in the top journal Genes & Development, which has devoted its cover to this research.

In the TGF-beta/Smad signal cascade, the hormones TGF-beta and BMP transmit information to the Smad protein in the cell nucleus in order for this molecule to stop cell division and to ensure that tissues grow in an orderly and coordinated manner. Although the TGF-beta/Smad signalling pathway has been known for over twenty years, until now it was unclear how Smads temporally controlled the activity of such important genes. “We had several pieces of the puzzle but we couldn’t put them together”, says Macías.

A number of earlier studies performed by Massagué’s lab had identified that Smads undergo phosphorylations –a kind of chemical change – in a region of the protein about which little is known. By means of biophysical and biochemical approaches, the researchers have discovered that these modifications occur in a coordinated fashion over time and are not random. “First, phosphorylations make some proteins bind to Smads in order to control the activity of target genes and later other phoshorylations cause protein bindings that lead to the destruction of Smad once this protein has completed its mission. This is the way cells prevent fatal errors”, explains Macías.

Having established the time sequence of these events, the scientists used cell and structural biology approaches –determination of the atom position in Smad proteins and other activating and destructor proteins bound to them– to confirm the results previously found. “We have been able to decipher the specificity of the binding between Smad and other proteins and to reveal the secret code that these proteins use to extract information”.

How do these proteins favour tumour cells? Massagué explains that “these signalling cascades are like the body’s pólice force. The tumour cells, in other words the delinquents, disturb these pathways and use them for their own means to grow and spread”. These pathways normally are involved in basic cell processes but when altered by mutations several diseases can appear such as cancer, congenital conditions, chronic inflammation and emphysema. These results could serve as the foundation on which to develop new clinical treatments against cancer and other diseases.

Reference article:
A Smad action-turnover switch operated by WW domain readers of a phosphoserine code. Eric Aragón, Nina Goerner, Alexia-Ileana Zaromytidou, Qiaoran Xi, Albert Escobedo, Joan Massagué, and Maria J. Macias.

Genes & Development (2011). [doi: 10.1101/gad.2060811]

Nuria Noriega | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>