Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a more than 82 million years old hepatitis B virus

02.05.2013
Scientists of Münster University were able to detect prehistoric hepatitis B viruses in bird genomes / Publication in "Nature Communications"

The liver inflammation hepatitis B comprises 350 million chronic illnesses and is one of the most prevalent virus infections worldwide – and the ancestors of this virus existed for more than 82 million years.


Artistic size comparison of hepatitis B viruses and human lymphocytes
Copyright: somersault18:24

This was discovered by a group of scientists around Dr. Alexander Suh at the Institute of Experimental Pathology at the University of Münster, as they were able to detect prehistoric hepatitis B viruses in bird genomes. The renowned scientific journal “Nature Communications” published the team’s findings in its current issue.

The researchers’ study – which is part of the project “Phylogeny of Birds” funded by the German Science Foundation (DFG) – permits unprecedented insights into the early evolution of hepatitis B viruses of birds and mammals. “Viruses themselves do not leave behind fossils that would provide insights into their past”, notes Dr. Alexander Suh on the rationale of the Münster research group’s work. Instead, together with the group leader Dr. Jürgen Schmitz, and Dr. Jan Ole Kriegs from the LWL-State Museum of Natural History of the Westphalia-Lippe Regional Association (LWL), Suh decided to look for genomic remnants of paleoviral sequences in the DNA of host organisms, such as birds.

As insertions of viral sequences in the genome of a host change relatively slowly, it is possible to study viral DNA sequences that are many millions of years old, as noted by Dr. Jürgen Schmitz: “The prehistorical viral DNA becomes frozen in its original state at the time of insertion into the host genome and thus remains discernible as such until present – thus, we refer to these sequences as molecular fossils", says Schmitz.

This procedure for the analysis of molecular fossils permits the reconstruction of the early evolution of viruses. Suh and his colleagues were able to comprehensively demonstrate this on the example of prehistoric insertions of hepatitis B viruses in bird genomes. “A sensational finding was a nearly complete virus genome that has been preserved for more than 82 million years as a molecular fossil”, describes Suh. This molecular fossil thus stems from the Late Mesozoic – a geological period where dinosaurs still roamed on earth.
The researchers’ findings imply that mammalian hepatitis B viruses probably originated via a bird–mammal host switch. “Furthermore, our results indicate that the oncogenic X gene of human hepatitis B viruses emerged relatively late in the evolution of this virus family”, reports Suh. Hence, the Münster researchers’ sensational finding does not only provide insights into a millions of years old type of avian hepatitis B, but also into the extant characteristics of this very prevalent virus infection in humans.

Contact:

Dr. Thomas Bauer
Dekanat der Medizinischen Fakultät
der Westfälischen Wilhelms-Universität Münster
Ressort Presse & Public Relations
Phone: +49 (0)251 83-58937
E-Mail: thbauer@uni-muenster.de

Publication:
Suh, A., Brosius, J., Schmitz, J., Kriegs, J. O. (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nature Communications, http://dx.doi.org/10.1038/ncomms2798

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de
http://dx.doi.org/10.1038/ncomms2798

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>