Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a more than 82 million years old hepatitis B virus

Scientists of Münster University were able to detect prehistoric hepatitis B viruses in bird genomes / Publication in "Nature Communications"

The liver inflammation hepatitis B comprises 350 million chronic illnesses and is one of the most prevalent virus infections worldwide – and the ancestors of this virus existed for more than 82 million years.

Artistic size comparison of hepatitis B viruses and human lymphocytes
Copyright: somersault18:24

This was discovered by a group of scientists around Dr. Alexander Suh at the Institute of Experimental Pathology at the University of Münster, as they were able to detect prehistoric hepatitis B viruses in bird genomes. The renowned scientific journal “Nature Communications” published the team’s findings in its current issue.

The researchers’ study – which is part of the project “Phylogeny of Birds” funded by the German Science Foundation (DFG) – permits unprecedented insights into the early evolution of hepatitis B viruses of birds and mammals. “Viruses themselves do not leave behind fossils that would provide insights into their past”, notes Dr. Alexander Suh on the rationale of the Münster research group’s work. Instead, together with the group leader Dr. Jürgen Schmitz, and Dr. Jan Ole Kriegs from the LWL-State Museum of Natural History of the Westphalia-Lippe Regional Association (LWL), Suh decided to look for genomic remnants of paleoviral sequences in the DNA of host organisms, such as birds.

As insertions of viral sequences in the genome of a host change relatively slowly, it is possible to study viral DNA sequences that are many millions of years old, as noted by Dr. Jürgen Schmitz: “The prehistorical viral DNA becomes frozen in its original state at the time of insertion into the host genome and thus remains discernible as such until present – thus, we refer to these sequences as molecular fossils", says Schmitz.

This procedure for the analysis of molecular fossils permits the reconstruction of the early evolution of viruses. Suh and his colleagues were able to comprehensively demonstrate this on the example of prehistoric insertions of hepatitis B viruses in bird genomes. “A sensational finding was a nearly complete virus genome that has been preserved for more than 82 million years as a molecular fossil”, describes Suh. This molecular fossil thus stems from the Late Mesozoic – a geological period where dinosaurs still roamed on earth.
The researchers’ findings imply that mammalian hepatitis B viruses probably originated via a bird–mammal host switch. “Furthermore, our results indicate that the oncogenic X gene of human hepatitis B viruses emerged relatively late in the evolution of this virus family”, reports Suh. Hence, the Münster researchers’ sensational finding does not only provide insights into a millions of years old type of avian hepatitis B, but also into the extant characteristics of this very prevalent virus infection in humans.


Dr. Thomas Bauer
Dekanat der Medizinischen Fakultät
der Westfälischen Wilhelms-Universität Münster
Ressort Presse & Public Relations
Phone: +49 (0)251 83-58937

Suh, A., Brosius, J., Schmitz, J., Kriegs, J. O. (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nature Communications,

Dr. Christina Heimken | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>