Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of 'executioner' protein opens door to new options for stroke ALS, spinal cord injury

05.03.2013
Oxidative stress turns a protein that normally protects healthy cells into their executioner, according to a study released today in the Proceedings of the National Academy of Sciences journal.

Alvaro Estevez, an associate professor at the University of Central Florida's College of Medicine, led the multi-university team that made the discovery, which could eventually help scientists develop new therapies to combat a host of conditions from stroke to Lou Gehrig's disease

Researchers have long known that oxidative stress damages cells and results in neurodegeneration, inflammation and aging. It was commonly believed that oxidation made a "crude," demolition-like attack on cells, causing them to crumble like a building in an earthquake, Estevez said. However, the latest findings show that oxidation results in a much more targeted attack to specific parts of the cell. Oxidative stress damages a specific "chaperone" cell protein called Hsp90. It plays a role in up to 200 different cell functions. But when a form of oxidative stress called tyrosine nitration modifies that protein, it turns into the cell "executioner" shutting it down.

"The concept that a protein that is normally protective and indispensable for cell survival and growth can turn into a killing machine, and just because of one specific oxidative modification, is amazing," said Maria C. Franco, a postdoctoral associate at UCF's Burnett School of Biomedical Sciences. She co-wrote the study. "Considering that this modified protein is present in a vast number of pathologies, it gives us hopes on finding new therapeutics approaches for several different diseases."

For example, researchers could devise a drug that stroke patients could take at the onset of their symptoms to prevent more healthy cells from dying, thus limiting the damage of the stroke. Because oxidation is linked to inflammation, researchers believe tyrosine nitration could also be related to other health problems including heart disease, cancer, aging and chronic pain.

"These are very exciting results and could begin a major shift in medicine," said Joseph Beckman, from Oregon State University Environmental Health Sciences Center, a collaborator on the study. "Preventing this process of tyrosine nitration may protect against a wide range of degenerative diseases."

"Most people think of things like heart disease, cancer, aging, liver disease, even the damage from spinal injury as completely different medical issues," Beckman said. "To the extent they can often be traced back to inflammatory processes that are caused by oxidative attack and cellular damage, they can be more similar than different. It could be possible to develop therapies with value against many seemingly different health problems."

Other contributors to the study include: Nicklaus A. Sparrow from UCF, Yaozu Ye from the University of Alabama at Birmingham, Christian A. Refakis, Jessica L. Feldman and Audrey L. Stokes from Franklin and Marshall College, Manuela Basso and Thong C. Ma from the Burke Medical Research Institute, Raquel M. Melero Fernández de Mera from Universidad de Castilla-La Mancha, Noel Y. Calingasan, Mahmoud Kiaei and M. Flint Beal from Weill Cornell Medical College, Timothy W. Rhoads, and Ryan Mehl from Oregon State University and Martin Grumet from Rutgers State University of New Jersey

The National Institutes of Health, the Burke Medical Research Institute, the ALS Association and other agencies financially supported this study.

Estevez joined the UCF College of Medicine in 2010. Previously he worked as a postdoctoral investigator at the University of Alabama at Birmingham and then as an assistant professor. In 2005 Estevez joined the Burke Cornell Medical Research Institute a part of the Weill Cornell Medical College in New York. Estevez has several degrees including a doctorate in philosophy, biology and cell biology from the Instituto Clemente Estable in Montevideo Uruguay.

50 Years of Achievement: The University of Central Florida, the nation's second-largest university with nearly 60,000 students, is celebrating its 50th anniversary in 2013. UCF has grown in size, quality, diversity and reputation, and today the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. Known as America's leading partnership university, UCF is an economic engine attracting and supporting industries vital to the region's success now and into the future. For more information, visit http://today.ucf.edu.

Wendy Sarubbi | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>