Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovering the bigger picture in chromosomes

Research team finds similarities in genomes across multiple species; platypus still out of place

By mapping various genomes onto an X-Y axis, a team comprised mostly of Kansas State University researchers has found that Charles Darwin and a fruit fly -- among other organisms -- have a lot in common genetically.

Their discovery, "Chromosome Size in Diploid Eukaryotic Species Centers on the Average Length with a Conserved Boundary," was recently published in the journal Molecular Biology and Evolution. It details a project that compared 886 chromosomes in 68 random species of eukaryotes -- organisms whose cells contain a nucleus and are enclosed by cellular membranes. The researchers found that the chromosome sizes within each eukaryotic species are actually similar rather than drastically different as previously believed. They also found that the chromosomes of these different organisms share a similar distribution pattern.

Because chromosomes are the genetic building blocks for an organism and its traits, the information will be beneficial to understanding the core components of biological evolution -- especially in genetics and genome evolution, said Jianming Yu, associate professor of agronomy at Kansas State University. With this data, scientists can now better predict the evolutionary adaptations of an organism.

"Basically what this all means is that if the chromosome number of a species can be given, the relative sizes of all the chromosomes can instantly be known," Yu said. "Also, if you tell me the genome size in the chromosome base pair, I can tell you the base pair length of each chromosome."

According to Yu, the most surprising finding is the extremely consistent distribution pattern of the chromosomes, a result from comparing the full sets of chromosomes -- called genomes -- of the 68 random eukaryotes. The team found that nearly every genome perfectly formed an S-curve of ascending chromosomal lengths when placed on a standardized X-Y axis. That meant the genome from a species of rice expressed the same pattern as the genome from a species of maize, sorghum, fruit fly, dog, chimpanzee, etc.

In order to reach these findings, though, the team started by comparing various genomes of species from multiple organisms, looking for similarities. The genomes selected were from eukaryotes; prokaryotes -- organisms like bacteria that contain no cell nucleus; vertebrates -- organisms with a spine; invertebrates -- organisms without a spine, such as insects; vascular plants -- plants that can transport food and material throughout their tissue; and unicellular organisms.

From there the team looked specifically at the chromosomes of 68 random eukaryote genomes. This amounted to observing 886 chromosomes, 22 of which were human autosomes -- any chromosome other than a sex chromosome. The sex chromosomes of each species were omitted because of their vastly different evolutionary history from other chromosomes, Yu said.

The researchers placed each fully sequenced eukaryote genome onto an X-Y axis, hoping to find similarities between the various organisms. To help generalize the vast amount of information, the X-Y axis graph was standardized with each species.

"It eliminated a scale effect and made it possible to compare a species with several dozen chromosomes to a species with much fewer chromosomes," said Xianran Li, research associate in agronomy.

That's when the team noticed the shockingly consistent distribution pattern.

"We could not believe this the first time the plot was generated," said Chengsong Zhu, research associate in agronomy.

The only genomes that deviated from forming an S-curve were that of the platypus -- an organism that contains characteristics of birds, reptiles, mammals, amphibians and fish -- and those of birds. Birds are unique because in addition to their usual chromosome sequences, they contain one additional set of minichromosome sequences, according to Zhongwei Lin, research associate in agronomy.

By finding normal distribution in nearly all of the genomes they used, geneticists can now say that if a species has a particular number of chromosomes, the chromosomes have to be distributed in this order because it's dictated by the laws of mitosis, meiosis and cell division, according to Guihua Bai, adjunct professor of agronomy at Kansas State University and research geneticist of the U.S. Department of Agriculture-Agricultural Research Service.

"The integration of biology and statistics holds enormous promises to gain insights from genomic data and life processes," said Min Zhang, associate professor of statistics from Purdue University and a co-author of the paper.

"We're in the genomic age, where sequencers and computers are constantly running and completing new genome sequences every day," Yu said. "We're expecting this information can help when it comes to finding similarities in those genomes. This type of broad analysis across species, taxonomic and disciplinary boundaries is really exciting in terms of discovering fundamental principles out of teeming genomic data."

The project was supported with funding from Kansas State University's Targeted Excellence Program, National Science Foundation, National Institutes of Health, U.S. Department of Defense and a seed grant through Purdue University's Discovery Park.

Other Kansas State University researchers include Yun Wu, research assistant in agronomy, and Weixing Song, assistant professor of statistics. Also collaborating on the study were four other biologists and statisticians from Purdue University, University of Minnesota and Cornell University.

The team's study can be read at

Jianming Yu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>