Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries Point to More Powerful Cancer Treatments, Fewer Side Effects

28.02.2014

Rutgers research suggests chemo and radiation can kill more cancer cells and spare healthy ones

What if there were a way to make chemotherapy and radiation more effective as cancer treatments than they are today, while also getting rid of debilitating side effects that patients dread? A new study led by Alexey Ryazanov, a professor of pharmacology at Rutgers Robert Wood Johnson Medical School and member of the Rutgers Cancer Institute of New Jersey, suggests the day that happens could be getting closer.

Side effects such as heart damage, nausea and hair loss occur when cancer therapy kills healthy cells along with the malignant cells that are being targeted. It is a medical form of collateral damage. But Ryazanov explains that if a way could be found to protect those healthy cells, then doses of chemo and radiation could actually be increased, “killing all the cancer cells and the patient would be cured. We also could start treating cancers that now can’t be cured because the most effective doses are too toxic to normal tissues.”

The key to Ryazanov’s vision of cancer treatment is addition by subtraction – specifically elimination of eEF2K – an enzyme that influences the rates at which proteins are created in the human body. Ryazanov first identified eEF2K more than a quarter century ago, and since then, bit by bit, he and other scientists have uncovered many complicated processes for which that enzyme is responsible.

Ryazanov’s latest findings, published in the journal Developmental Cell, demonstrate that the presence of eEF2K weakens healthy cells. His evidence is the enzyme’s involvement in a process where defective cells involved in reproduction are degraded – and ultimately destroyed – as a way to preserve genetic quality from one generation to the next.

There is eEF2K in every cell in the body, and Ryazanov says the enzyme’s presence tends to leave cells less robust than they otherwise would be. According to Ryazanov, it is that added weakness that leaves healthy cells vulnerable to being poisoned by chemo and radiation.

Ryazanov says removing the enzyme would make those healthy cells stronger, to the point where they would survive cancer therapy. That, in turn, would eliminate the side effects.

How would healthy cells survive cancer treatment while malignant cells would not? Ryazanov explains that tumors grow and cancer spreads when malignant cells divide and duplicate. Chemo and radiation are specifically designed to block cell division, and Ryazanov says removing the enzyme eEF2K actually makes the cancer cells more vulnerable to the treatment. By contrast, as long as healthy cells are strong enough to resist being poisoned, the cancer therapies won’t hurt them.

In 2008, Ryazanov founded Longevica Pharmaceuticals, a company whose mission is to perfect medications designed to eliminate the enzyme and improve the performance of chemo and radiation. Animal testing is already underway, and Ryazanov hopes that his new findings will speed the day when medications that pass those tests can be tried in people. He even predicts that taking such a drug may be as easy as swallowing a pill.

Ryazanov says there is a nice logic to the research and drug development that have become his life’s work – because the cancer therapies he wants to enhance already exist and are known to work. Making chemo and radiation less toxic, he says, can make those therapies dramatically more effective in the relatively near future, while other cutting-edge approaches to cancer treatment might need far more time to prove their ultimate worth.

Rob Forman | newswise
Further information:
http://www.rutgers.edu

Further reports about: Biomedical Cancer Powerful Rutgers damage eEF2K effects enzyme healthy malignant therapy

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>