Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discoveries Point to More Powerful Cancer Treatments, Fewer Side Effects


Rutgers research suggests chemo and radiation can kill more cancer cells and spare healthy ones

What if there were a way to make chemotherapy and radiation more effective as cancer treatments than they are today, while also getting rid of debilitating side effects that patients dread? A new study led by Alexey Ryazanov, a professor of pharmacology at Rutgers Robert Wood Johnson Medical School and member of the Rutgers Cancer Institute of New Jersey, suggests the day that happens could be getting closer.

Side effects such as heart damage, nausea and hair loss occur when cancer therapy kills healthy cells along with the malignant cells that are being targeted. It is a medical form of collateral damage. But Ryazanov explains that if a way could be found to protect those healthy cells, then doses of chemo and radiation could actually be increased, “killing all the cancer cells and the patient would be cured. We also could start treating cancers that now can’t be cured because the most effective doses are too toxic to normal tissues.”

The key to Ryazanov’s vision of cancer treatment is addition by subtraction – specifically elimination of eEF2K – an enzyme that influences the rates at which proteins are created in the human body. Ryazanov first identified eEF2K more than a quarter century ago, and since then, bit by bit, he and other scientists have uncovered many complicated processes for which that enzyme is responsible.

Ryazanov’s latest findings, published in the journal Developmental Cell, demonstrate that the presence of eEF2K weakens healthy cells. His evidence is the enzyme’s involvement in a process where defective cells involved in reproduction are degraded – and ultimately destroyed – as a way to preserve genetic quality from one generation to the next.

There is eEF2K in every cell in the body, and Ryazanov says the enzyme’s presence tends to leave cells less robust than they otherwise would be. According to Ryazanov, it is that added weakness that leaves healthy cells vulnerable to being poisoned by chemo and radiation.

Ryazanov says removing the enzyme would make those healthy cells stronger, to the point where they would survive cancer therapy. That, in turn, would eliminate the side effects.

How would healthy cells survive cancer treatment while malignant cells would not? Ryazanov explains that tumors grow and cancer spreads when malignant cells divide and duplicate. Chemo and radiation are specifically designed to block cell division, and Ryazanov says removing the enzyme eEF2K actually makes the cancer cells more vulnerable to the treatment. By contrast, as long as healthy cells are strong enough to resist being poisoned, the cancer therapies won’t hurt them.

In 2008, Ryazanov founded Longevica Pharmaceuticals, a company whose mission is to perfect medications designed to eliminate the enzyme and improve the performance of chemo and radiation. Animal testing is already underway, and Ryazanov hopes that his new findings will speed the day when medications that pass those tests can be tried in people. He even predicts that taking such a drug may be as easy as swallowing a pill.

Ryazanov says there is a nice logic to the research and drug development that have become his life’s work – because the cancer therapies he wants to enhance already exist and are known to work. Making chemo and radiation less toxic, he says, can make those therapies dramatically more effective in the relatively near future, while other cutting-edge approaches to cancer treatment might need far more time to prove their ultimate worth.

Rob Forman | newswise
Further information:

Further reports about: Biomedical Cancer Powerful Rutgers damage eEF2K effects enzyme healthy malignant therapy

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>