Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in Mitochondria Open New Field of Cancer Research

21.06.2011
Researchers at Virginia Commonwealth University Massey Cancer Center have revealed novel mechanisms in mitochondria that have implications for cancer as well as many other age-related diseases such as Parkinson’s disease, heart disease and hypertension. This discovery has pioneered the formation of a whole new field within epigenetics research ripe with possibilities of developing future gene therapies to treat cancer and age-associated diseases.

Shirley M. Taylor, Ph.D., researcher at VCU Massey Cancer Center and associate professor in the VCU Department of Microbiology and Immunology at VCU School of Medicine, was a graduate student when her research helped establish the field of epigenetics (epigenetics refers to the process that controls which genes get expressed in the nucleus of a cell, ultimately determining that cell’s biological characteristics). Now decades later, Taylor and her colleagues have further expanded the field of epigenetics into a new area of research they created by discovering enzymes in mitochondria that were previously known to exist only in nuclei.

In mammals, all cells have two distinct genomes, which include all of an organism’s hereditary information. One set exists in the nucleus while the other exists in the mitochondrion, the energy generator of the cell.

Published in the journal Proceedings of the National Academy of Sciences (PNAS), Taylor’s study found two DNA modifications in the mitochondrial genome: methylated cytosine, known to function in the nucleus by “silencing” the expression of certain genes; and hydroxymethyl cytosine, which removes the silencing mark imposed by the cytosine methylation.

Together, these modifications act like a genetic on/off switch in a process known as DNA methylation. Taylor’s team also showed that the enzyme responsible for DNA methylation was present in mammalian mitochondria. The presence of these DNA modifications leads the researchers to believe that a system of gene control similar to what occurs in the nucleus is present in mitochondria, functioning to ensure the correct levels of proteins needed for proper energy generation.

“In diseases such as cancer, epigenetic control is lost,” says Taylor. “Genes that should be switched on are switched off and vice versa, leading to uncontrolled growth. Our research indicates that errors in gene expression could be unfolding in mitochondria, possibly contributing to loss of mitochondrial function typical of cancer and a host of other age-related diseases.”

Taylor’s team is currently working to force into mitochondria more of the enzyme responsible for forming the silencing mark, and to identify enzymes responsible for removing it. This should allow the researchers to observe whether these marks impact mitochondrial ability to generate energy. The researchers are also comparing the amount of DNA methylation in diseased cells versus healthy cells to determine whether mitochondrial gene expression plays a role in various diseases.

“Many diseases that afflict the elderly seem to have defects in mitochondrial function,” says Taylor. “We are working to determine whether epigenetic control is a factor contributing to these defects. If so, drugs known to impact gene expression in the nucleus may be useful in reversing damage caused by improper gene expression in mitochondria.”

Taylor collaborated on this study with Richard G. Moran, Ph.D., associate director for basic research at VCU Massey Cancer Center and professor in the Department of Pharmacology and Toxicology at VCU School of Medicine. Other collaborators include doctoral students Lisa S. Shock, Prashant V. Thakkar and Erica J. Peterson from the VCU Department of Microbiology and Immunology. The study was partially funded by the National Cancer Institute and by a pilot project award from Massey.

The full manuscript is available online at http://www.pnas.org/content/early/2011/02/08/1012311108.full.pdf+html.

About the VCU Massey Cancer Center
VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers a wide range of clinical trials throughout Virginia, oftentimes the most trials in the state, and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.
About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>