Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in Mitochondria Open New Field of Cancer Research

21.06.2011
Researchers at Virginia Commonwealth University Massey Cancer Center have revealed novel mechanisms in mitochondria that have implications for cancer as well as many other age-related diseases such as Parkinson’s disease, heart disease and hypertension. This discovery has pioneered the formation of a whole new field within epigenetics research ripe with possibilities of developing future gene therapies to treat cancer and age-associated diseases.

Shirley M. Taylor, Ph.D., researcher at VCU Massey Cancer Center and associate professor in the VCU Department of Microbiology and Immunology at VCU School of Medicine, was a graduate student when her research helped establish the field of epigenetics (epigenetics refers to the process that controls which genes get expressed in the nucleus of a cell, ultimately determining that cell’s biological characteristics). Now decades later, Taylor and her colleagues have further expanded the field of epigenetics into a new area of research they created by discovering enzymes in mitochondria that were previously known to exist only in nuclei.

In mammals, all cells have two distinct genomes, which include all of an organism’s hereditary information. One set exists in the nucleus while the other exists in the mitochondrion, the energy generator of the cell.

Published in the journal Proceedings of the National Academy of Sciences (PNAS), Taylor’s study found two DNA modifications in the mitochondrial genome: methylated cytosine, known to function in the nucleus by “silencing” the expression of certain genes; and hydroxymethyl cytosine, which removes the silencing mark imposed by the cytosine methylation.

Together, these modifications act like a genetic on/off switch in a process known as DNA methylation. Taylor’s team also showed that the enzyme responsible for DNA methylation was present in mammalian mitochondria. The presence of these DNA modifications leads the researchers to believe that a system of gene control similar to what occurs in the nucleus is present in mitochondria, functioning to ensure the correct levels of proteins needed for proper energy generation.

“In diseases such as cancer, epigenetic control is lost,” says Taylor. “Genes that should be switched on are switched off and vice versa, leading to uncontrolled growth. Our research indicates that errors in gene expression could be unfolding in mitochondria, possibly contributing to loss of mitochondrial function typical of cancer and a host of other age-related diseases.”

Taylor’s team is currently working to force into mitochondria more of the enzyme responsible for forming the silencing mark, and to identify enzymes responsible for removing it. This should allow the researchers to observe whether these marks impact mitochondrial ability to generate energy. The researchers are also comparing the amount of DNA methylation in diseased cells versus healthy cells to determine whether mitochondrial gene expression plays a role in various diseases.

“Many diseases that afflict the elderly seem to have defects in mitochondrial function,” says Taylor. “We are working to determine whether epigenetic control is a factor contributing to these defects. If so, drugs known to impact gene expression in the nucleus may be useful in reversing damage caused by improper gene expression in mitochondria.”

Taylor collaborated on this study with Richard G. Moran, Ph.D., associate director for basic research at VCU Massey Cancer Center and professor in the Department of Pharmacology and Toxicology at VCU School of Medicine. Other collaborators include doctoral students Lisa S. Shock, Prashant V. Thakkar and Erica J. Peterson from the VCU Department of Microbiology and Immunology. The study was partially funded by the National Cancer Institute and by a pilot project award from Massey.

The full manuscript is available online at http://www.pnas.org/content/early/2011/02/08/1012311108.full.pdf+html.

About the VCU Massey Cancer Center
VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers a wide range of clinical trials throughout Virginia, oftentimes the most trials in the state, and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.
About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>