Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in the fungal kingdom: RUB researchers decode genome with new technique

09.04.2010
PLoS Genetics: efficient "next generation" sequencing

Using "next generation" techniques researchers at the Ruhr-Universität together with international colleagues have decoded the genome of the fungus Sordaria macrospora. By doing so, they have gained insights into the way that fungi live and evolve.


Young fruiting bodies and vegetative hyphae of the fungus Sordaria macrospora. Illustration: Kathryn M. Lord, Sandra Bloemendal, Chris E. Jeffree, Ulrich Kück, Nick D. Read

Sordaria macrospora is able to cope with multiple copies of the same genes, which lead to cell death in other fungi due to immune-like reactions. They also found genes from distant relatives, suggesting that so-called horizontal gene transfer has been taking place over the course of evolution.

In addition, they were able to show that the new techniques can be used effectively to sequence genomes of complex organisms at low cost. The researchers led by Prof. Dr. Ulrich Kück report in the current issue of PLoS Genetics.

Fungi: major ecological and economic importance

With an estimated 1.5 to 6 million species which form their own kingdom alongside plants and animals, the importance of fungi can hardly be overestimated: some grow on dead organic matter, help in the decomposition of plant and animal waste products and thus contribute to the global carbon cycle. Others are important as pathogens, and many fungi are used in biotechnology, to produce antibiotics, enzymes or foodstuffs. In addition, fungi have for decades played a major role in fundamental research when it comes to identifying genetic factors that are also important in other organisms such as humans. "This is due, among other things, to the fact that although fungal genomes are about 100 times smaller than the human genome - 40 million base pairs in the genome of Sordaria macrospora, 3,000 million in the human genome - they still encode a similarly large number of genes: approximately 11,000 genes in Sordaria macrospora, about 25,000 in humans", explained Prof. Kück. The first genome of a eukaryote, which was fully sequenced in1996, was that of the unicellular fungus Saccharomyces cerevisiae, known as baker's or brewer's yeast. This took ~600 researchers six years.

New sequencing techniques: assembling many tiny building blocks

Because of its complexity, until recently, genome sequencing was extremely expensive and usually the reserve of specialised sequencing and bioinformatics institutes. Some years ago, however, "next generation" techniques were developed that significantly reduce costs by using high-throughput methods. All techniques, including the previously used standard techniques (Sanger sequencing), deliver sequence reads with a maximum of 1,000 base pairs. For this reason, genome sequences always have to be assembled from many individual sequences. The new techniques deliver considerably more sequences than Sanger sequencing in the same time, however the individual reads are considerably shorter (36 to 450 base pairs). In order to be able to piece together these short reads to form a genome, newly developed programs on powerful computers are required. Bochum's researchers have used the servers of the RUB data centre to assemble the Sordaria macrospora genome out of nearly 100 million individual sequences. "The methods thus developed will be of great significance in future training programs for master and Ph.D. students and thus provide up to date practical courses with a focus on bioinformatics" explained Prof. Kück.

Surprises in the genome of Sordaria macrospora

The genome sequence of Sordaria macrospora had a number of surprises in store for the researchers: the genome contains multiple copies of genes which serve in other fungi to distinguish between "self" and "non-self", analogous to the rejection of foreign tissue in medical transplants. Unlike Sordaria macrospora, other fungi only have one copy of these genes in their genomes. The presence of multiple copies inevitably leads to incompatibility reactions, which in serious cases result in the death of the affected cells. How Sordaria macrospora copes with several of these gene copies in one genome is still unclear. Furthermore, the genome of Sordaria macrospora contains several genes that were probably taken over by means of "horizontal gene transfer" from another, only very distantly related fungus, and which expand the biochemical repertoire of Sordaria macrospora.

International cooperation and various sponsors

A collaboration of researchers from eight universities in four countries, led by Dr. Minou Nowrousian and Prof. Dr. Ulrich Kück (Department of General and Molecular Botany) made the implementation of this project possible. Thus, the DNA for the sequencing was isolated in Bochum, and DNA sequencing in the USA and Germany led to the sequence data, from which the corresponding genome sequence was assembled. Researchers from Bochum (Dr. Minou Nowrousian, Dr. Ines Engh, Dr. Jens Kamerewerd and Prof. Dr. Ulrich Kück) and research groups from the USA, England and France were involved in the bioinformatic analysis. The project was made possible by funding from the German Research Foundation (DFG) within the framework of the SFB480 (chair Ulrich Kück), by individual project funding from the DFG, as well as funding from the Protein Research Department (PRD, chair Klaus Gerwert).

Bibliographic record

Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Pöggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kück U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genetics 6 (4): e1000891. doi:10.1371/journal.pgen.1000891

Further information

Dr. Minou Nowrousian, Prof. Dr. Ulrich Kück, Department of General and Molecular Botany Faculty of Biology & Biotechnology of the Ruhr-Universität Bochum, 44780 Bochum, tel.: 0234/32-26212, e-mail: Minou.Nowrousian@rub.de, ulrich.kueck@ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/allgbotanik/
http://c4-1-8.serverhosting.rub.de/public/ -

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>