Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in the fungal kingdom: RUB researchers decode genome with new technique

09.04.2010
PLoS Genetics: efficient "next generation" sequencing

Using "next generation" techniques researchers at the Ruhr-Universität together with international colleagues have decoded the genome of the fungus Sordaria macrospora. By doing so, they have gained insights into the way that fungi live and evolve.


Young fruiting bodies and vegetative hyphae of the fungus Sordaria macrospora. Illustration: Kathryn M. Lord, Sandra Bloemendal, Chris E. Jeffree, Ulrich Kück, Nick D. Read

Sordaria macrospora is able to cope with multiple copies of the same genes, which lead to cell death in other fungi due to immune-like reactions. They also found genes from distant relatives, suggesting that so-called horizontal gene transfer has been taking place over the course of evolution.

In addition, they were able to show that the new techniques can be used effectively to sequence genomes of complex organisms at low cost. The researchers led by Prof. Dr. Ulrich Kück report in the current issue of PLoS Genetics.

Fungi: major ecological and economic importance

With an estimated 1.5 to 6 million species which form their own kingdom alongside plants and animals, the importance of fungi can hardly be overestimated: some grow on dead organic matter, help in the decomposition of plant and animal waste products and thus contribute to the global carbon cycle. Others are important as pathogens, and many fungi are used in biotechnology, to produce antibiotics, enzymes or foodstuffs. In addition, fungi have for decades played a major role in fundamental research when it comes to identifying genetic factors that are also important in other organisms such as humans. "This is due, among other things, to the fact that although fungal genomes are about 100 times smaller than the human genome - 40 million base pairs in the genome of Sordaria macrospora, 3,000 million in the human genome - they still encode a similarly large number of genes: approximately 11,000 genes in Sordaria macrospora, about 25,000 in humans", explained Prof. Kück. The first genome of a eukaryote, which was fully sequenced in1996, was that of the unicellular fungus Saccharomyces cerevisiae, known as baker's or brewer's yeast. This took ~600 researchers six years.

New sequencing techniques: assembling many tiny building blocks

Because of its complexity, until recently, genome sequencing was extremely expensive and usually the reserve of specialised sequencing and bioinformatics institutes. Some years ago, however, "next generation" techniques were developed that significantly reduce costs by using high-throughput methods. All techniques, including the previously used standard techniques (Sanger sequencing), deliver sequence reads with a maximum of 1,000 base pairs. For this reason, genome sequences always have to be assembled from many individual sequences. The new techniques deliver considerably more sequences than Sanger sequencing in the same time, however the individual reads are considerably shorter (36 to 450 base pairs). In order to be able to piece together these short reads to form a genome, newly developed programs on powerful computers are required. Bochum's researchers have used the servers of the RUB data centre to assemble the Sordaria macrospora genome out of nearly 100 million individual sequences. "The methods thus developed will be of great significance in future training programs for master and Ph.D. students and thus provide up to date practical courses with a focus on bioinformatics" explained Prof. Kück.

Surprises in the genome of Sordaria macrospora

The genome sequence of Sordaria macrospora had a number of surprises in store for the researchers: the genome contains multiple copies of genes which serve in other fungi to distinguish between "self" and "non-self", analogous to the rejection of foreign tissue in medical transplants. Unlike Sordaria macrospora, other fungi only have one copy of these genes in their genomes. The presence of multiple copies inevitably leads to incompatibility reactions, which in serious cases result in the death of the affected cells. How Sordaria macrospora copes with several of these gene copies in one genome is still unclear. Furthermore, the genome of Sordaria macrospora contains several genes that were probably taken over by means of "horizontal gene transfer" from another, only very distantly related fungus, and which expand the biochemical repertoire of Sordaria macrospora.

International cooperation and various sponsors

A collaboration of researchers from eight universities in four countries, led by Dr. Minou Nowrousian and Prof. Dr. Ulrich Kück (Department of General and Molecular Botany) made the implementation of this project possible. Thus, the DNA for the sequencing was isolated in Bochum, and DNA sequencing in the USA and Germany led to the sequence data, from which the corresponding genome sequence was assembled. Researchers from Bochum (Dr. Minou Nowrousian, Dr. Ines Engh, Dr. Jens Kamerewerd and Prof. Dr. Ulrich Kück) and research groups from the USA, England and France were involved in the bioinformatic analysis. The project was made possible by funding from the German Research Foundation (DFG) within the framework of the SFB480 (chair Ulrich Kück), by individual project funding from the DFG, as well as funding from the Protein Research Department (PRD, chair Klaus Gerwert).

Bibliographic record

Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Pöggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kück U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genetics 6 (4): e1000891. doi:10.1371/journal.pgen.1000891

Further information

Dr. Minou Nowrousian, Prof. Dr. Ulrich Kück, Department of General and Molecular Botany Faculty of Biology & Biotechnology of the Ruhr-Universität Bochum, 44780 Bochum, tel.: 0234/32-26212, e-mail: Minou.Nowrousian@rub.de, ulrich.kueck@ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/allgbotanik/
http://c4-1-8.serverhosting.rub.de/public/ -

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>