Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries in cell aging

24.01.2012
A group of researchers led by the Institute of Biotechnology and Biomedicine (IBB) and Universitat Autònoma de Barcelona (UAB) have achieved to quantify with precision the effect of protein aggregation on cell aging processes using as models the Escherichia coli bacteria and the molecule which triggers Alzheimer's disease. Scientists demonstrated that the effect can be predicted before it occurs. Protein aggregation is related to several diseases, including neurodegenerative diseases.

The research, published recently in the Journal of Molecular Biology, provides an extremely reliable system with which to model and quantify the effect of protein aggregation on the viability, division and aging of cells. It also aids in further understanding the natural evolution of proteins.

According to Salvador Ventura, researcher at IBB and director of the research project, "it will serve to develop computer approximations to predict the effects aggregation has on cell aging, as well as to search for molecules that act as natural chaperones, highly conserved proteins which are present also in humans and which have the ability to reduce this effect in the bacteria".

Although it is widely accepted that bad folding and aggregation of proteins reduces the cell's ability to survive and reproduce, the damage caused had not been previously measured experimentally as precisely as it was in this research.

In previous studies scientists had verified that the expression of the Alzheimer's AB42 peptide in bacteria induces the process of protein aggregation. Now they have demonstrated that this effect is coded in the protein aggregation sequence and that it depends on intrinsic properties, not on a direct response from within the cell. This makes it possible to predict the effect. Scientists also demonstrated that damage caused to the bacteria is controlled by molecular chaperones, which reduce the tendency of proteins to aggregate and favour cell survival.

In addition to researchers from IBB and the UAB Department of Biochemistry and Molecular Biology, participating in the project were scientists from the Biophysics Unit at CSIC-UPV, the University of the Basque Country, the Institute for Bioengineering of Catalonia and the Barcelona Centre for International Health Research.

Maria Jesus Delgado | EurekAlert!
Further information:
http://www.uab.cat

Further reports about: Molecular Biology Molecular Target UAB synthetic biology

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>