Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovered gene causes Kabuki syndrome

NHGRI-supported researchers streamline DNA sequencing strategies to find rare disease genes quickly

Using a new, rapid and less expensive DNA sequencing strategy, scientists have discovered genetic alterations that account for most cases of Kabuki syndrome, a rare disorder that causes multiple birth defects and mental retardation. Instead of sequencing the entire human genome, the new approach sequences just the exome, the 1-2 percent of the human genome that contains protein-coding genes.

Kabuki syndrome, which has an estimated incidence of 1 in 32,000 births, was originally described by Japanese scientists in 1981. Patients with the disorder often have distinct facial features that resemble the make-up worn by actors of Kabuki, a Japanese theatrical form.

The work, published in today's advanced online edition of Nature Genetics, was carried out by scientists at the University of Washington in Seattle as part of a larger effort to use 'second generation' DNA sequencing technologies in new ways to identify genes for rare disorders. The project is funded by a $3.9 million American Recovery and Reinvestment Act grant from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health.

"It's clear from this work that new DNA sequencing technologies are powerful and effective tools that scientists can use to accelerate the discovery of genes involved in rare diseases, an effort that previously was slow and costly," said NHGRI Director Eric D. Green, M.D., Ph.D. "The potential to rapidly identify gene mutations causing more than 6,000 rare diseases is an important step forward for researchers who are trying to understand the biology of these conditions and thereby improve strategies to care for patients they affect."

The University of Washington researchers sequenced the exomes of 10 unrelated individuals with Kabuki syndrome. Beginning with the premise that Kabuki syndrome is caused by alterations in just a single gene, the researchers compared the exomes of the 10 patients to the human genome sequence to look for differences shared by the affected individuals. Initially, the researchers identified none.

The researchers then tested the hypothesis that Kabuki syndrome is more genetically heterogeneous than originally assumed, and that multiple genes could potentially cause the disorder. Looking for novel variants in genes that were shared among subsets of the 10 patients' exomes, they found novel, matching variants that were shared in three genes in nine of the patient's exomes, shared in six genes in at least eight exomes, and shared in 16 genes among seven exomes.

With no obvious way to rank these gene candidates, the researchers categorized each Kabuki case based on a subjective assessment of how well the patient matched the characteristics of Kabuki syndrome. They also looked in particular for variants in genes that led to a loss of function. The combined analysis pointed to gene called MLL2.

The researchers found novel variants which lead to a loss of function in the MLL2 gene in the four highest ranked cases, and in three of the remaining six cases. The variants were nonsense and frameshift mutations. The nonsense mutation substituted a single nucleotide (a molecule that links to form DNA) in the gene code, while the frameshift mutation resulted in a four nucleotide deletion in the gene.

In these cases, each nonsense and frameshift mutation resulted in the production of a shortened, nonfunctional protein. The MLL2 gene normally encodes a protein important in the regulation of chromatin, a protein that helps package the DNA in a compact form and allows the chromosome to fit in the cell nucleus. Changes in chromatin structure are associated with DNA replication and turning genes on or off.

Once the researchers suspected the MLL2 gene, follow-up sequencing using the traditional and highly accurate Sanger DNA sequencing method, more capable of reliably detecting frameshifts, was used to identify additional MLL2 loss-of-function gene variants, which lead to a loss of function in two of the three remaining cases. Ultimately, the researchers were able to discover MLL2 mutations in nine of the 10 patients' exomes.

The findings were then validated using Sanger sequencing in 43 additional Kabuki syndrome cases. Novel MLL2 variants were found in 26 of the 43 cases. In the end, a total of 33 distinct MLL2 mutations were found in 35 of 53, or 66 percent, of patients with Kabuki syndrome. The researchers also discovered that in each of the 12 cases for which DNA from both parents was available, the MLL2 variants reflected new mutations within the affected individual's genome and were not present in either parent's genomes.

"Our findings strongly suggest that alterations in the MLL2 gene are a major cause of Kabuki syndrome," said co-senior author Jay Shendure, M.D., Ph.D., assistant professor of genome sciences at the University of Washington School of Medicine.

"It is clear that there may be additional genes in which variants cause Kabuki syndrome, as approximately one-third of cases did not have MLL2 mutations," said co-senior author Michael Bamshad, M.D., professor of pediatrics at the University of Washington School of Medicine. "To find these, it will be important to sequence the exomes of additional, well-characterized cases of Kabuki syndrome in which we do not find we don't see MLL2 mutations."

In addition to funding from NHGRI, individual researchers on the team were also supported by grants from the National Heart Lung and Blood Institute (NHLBI), the National Institute of Environmental Health Sciences, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

To learn more about the application of exome sequencing, view a video,, of one of the Kabuki paper's authors, Deborah Nickerson, Ph.D., professor of genome sciences, Northwest Genomics Center, University of Washington. Dr. Nickerson has received Recovery Act funds from NHLBI to perform exome sequencing on DNA samples from NHLBI-funded population studies of common heart, lung and blood diseases.

The public may request useful information about genetic and rare diseases by contacting the Genetic and Rare Diseases Information Center (GARD),, which provides immediate access to experienced information specialists who can furnish current and accurate information in both English and Spanish.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site,

Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit our Web site at Subscribe to one or more of the NIEHS news lists ( to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute's Web site at

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases.

Omar McCrimmon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>