Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered gene causes Kabuki syndrome

16.08.2010
NHGRI-supported researchers streamline DNA sequencing strategies to find rare disease genes quickly

Using a new, rapid and less expensive DNA sequencing strategy, scientists have discovered genetic alterations that account for most cases of Kabuki syndrome, a rare disorder that causes multiple birth defects and mental retardation. Instead of sequencing the entire human genome, the new approach sequences just the exome, the 1-2 percent of the human genome that contains protein-coding genes.

Kabuki syndrome, which has an estimated incidence of 1 in 32,000 births, was originally described by Japanese scientists in 1981. Patients with the disorder often have distinct facial features that resemble the make-up worn by actors of Kabuki, a Japanese theatrical form.

The work, published in today's advanced online edition of Nature Genetics, was carried out by scientists at the University of Washington in Seattle as part of a larger effort to use 'second generation' DNA sequencing technologies in new ways to identify genes for rare disorders. The project is funded by a $3.9 million American Recovery and Reinvestment Act grant from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health.

"It's clear from this work that new DNA sequencing technologies are powerful and effective tools that scientists can use to accelerate the discovery of genes involved in rare diseases, an effort that previously was slow and costly," said NHGRI Director Eric D. Green, M.D., Ph.D. "The potential to rapidly identify gene mutations causing more than 6,000 rare diseases is an important step forward for researchers who are trying to understand the biology of these conditions and thereby improve strategies to care for patients they affect."

The University of Washington researchers sequenced the exomes of 10 unrelated individuals with Kabuki syndrome. Beginning with the premise that Kabuki syndrome is caused by alterations in just a single gene, the researchers compared the exomes of the 10 patients to the human genome sequence to look for differences shared by the affected individuals. Initially, the researchers identified none.

The researchers then tested the hypothesis that Kabuki syndrome is more genetically heterogeneous than originally assumed, and that multiple genes could potentially cause the disorder. Looking for novel variants in genes that were shared among subsets of the 10 patients' exomes, they found novel, matching variants that were shared in three genes in nine of the patient's exomes, shared in six genes in at least eight exomes, and shared in 16 genes among seven exomes.

With no obvious way to rank these gene candidates, the researchers categorized each Kabuki case based on a subjective assessment of how well the patient matched the characteristics of Kabuki syndrome. They also looked in particular for variants in genes that led to a loss of function. The combined analysis pointed to gene called MLL2.

The researchers found novel variants which lead to a loss of function in the MLL2 gene in the four highest ranked cases, and in three of the remaining six cases. The variants were nonsense and frameshift mutations. The nonsense mutation substituted a single nucleotide (a molecule that links to form DNA) in the gene code, while the frameshift mutation resulted in a four nucleotide deletion in the gene.

In these cases, each nonsense and frameshift mutation resulted in the production of a shortened, nonfunctional protein. The MLL2 gene normally encodes a protein important in the regulation of chromatin, a protein that helps package the DNA in a compact form and allows the chromosome to fit in the cell nucleus. Changes in chromatin structure are associated with DNA replication and turning genes on or off.

Once the researchers suspected the MLL2 gene, follow-up sequencing using the traditional and highly accurate Sanger DNA sequencing method, more capable of reliably detecting frameshifts, was used to identify additional MLL2 loss-of-function gene variants, which lead to a loss of function in two of the three remaining cases. Ultimately, the researchers were able to discover MLL2 mutations in nine of the 10 patients' exomes.

The findings were then validated using Sanger sequencing in 43 additional Kabuki syndrome cases. Novel MLL2 variants were found in 26 of the 43 cases. In the end, a total of 33 distinct MLL2 mutations were found in 35 of 53, or 66 percent, of patients with Kabuki syndrome. The researchers also discovered that in each of the 12 cases for which DNA from both parents was available, the MLL2 variants reflected new mutations within the affected individual's genome and were not present in either parent's genomes.

"Our findings strongly suggest that alterations in the MLL2 gene are a major cause of Kabuki syndrome," said co-senior author Jay Shendure, M.D., Ph.D., assistant professor of genome sciences at the University of Washington School of Medicine.

"It is clear that there may be additional genes in which variants cause Kabuki syndrome, as approximately one-third of cases did not have MLL2 mutations," said co-senior author Michael Bamshad, M.D., professor of pediatrics at the University of Washington School of Medicine. "To find these, it will be important to sequence the exomes of additional, well-characterized cases of Kabuki syndrome in which we do not find we don't see MLL2 mutations."

In addition to funding from NHGRI, individual researchers on the team were also supported by grants from the National Heart Lung and Blood Institute (NHLBI), the National Institute of Environmental Health Sciences, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

To learn more about the application of exome sequencing, view a video, http://www.nhlbi.nih.gov/recovery/researchers/index.php?id=200, of one of the Kabuki paper's authors, Deborah Nickerson, Ph.D., professor of genome sciences, Northwest Genomics Center, University of Washington. Dr. Nickerson has received Recovery Act funds from NHLBI to perform exome sequencing on DNA samples from NHLBI-funded population studies of common heart, lung and blood diseases.

The public may request useful information about genetic and rare diseases by contacting the Genetic and Rare Diseases Information Center (GARD), http://www.genome.gov/10000409, which provides immediate access to experienced information specialists who can furnish current and accurate information in both English and Spanish.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site, www.genome.gov.

Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at www.nhlbi.nih.gov.

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit our Web site at http://www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (http://www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute's Web site at http://www.nichd.nih.gov/.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases.

Omar McCrimmon | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>