Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disconnect Between Brain Regions in ADHD

12.01.2010
Two brain areas fail to connect when children with attention deficit hyperactivity disorder attempt a task that measures attention, according to researchers at the UC Davis Center for Mind and Brain and M.I.N.D. Institute.

"This is the first time that we have direct evidence that this connectivity is missing in ADHD," said Ali Mazaheri, postdoctoral researcher at the Center for Mind and Brain. Mazaheri and his colleagues made the discovery by analyzing the brain activity in children with ADHD. The paper appears in the current online issue of the journal Biological Psychiatry.

The researchers measured electrical rhythms from the brains of volunteers, especially the alpha rhythm. When part of the brain is emitting alpha rhythms, it shows that it is disengaged from the rest of the brain and not receiving or processing information optimally, Mazaheri said.

In the experiments, children with diagnosed ADHD and normal children were given a simple attention test while their brain waves were measured. The test consisted of being shown a red or blue image, or hearing a high or low sound, and having to react by pressing a button. Immediately before the test, the children were shown either a letter "V" to alert them that the test would involve a picture (visual), or an inverted "V" representing the letter “A” to alert them that they would hear a sound (auditory).

The experiments were conducted by researchers in the laboratories of Ron Mangun, professor of psychology and neurology, and Blythe Corbett, associate clinical professor of psychiatry and behavioral sciences and a researcher at the M.I.N.D. Institute.

According to current models of how the brain allocates attention, signals from the frontal cortex -- such as the "V" and "A" cues -- should alert other parts of the brain, such as the visual processing area at the back of the head, to prepare to pay attention to something. That should be reflected in a drop in alpha wave activity in the visual area, Mazaheri said.

And that is what the researchers found in the brain waves of children without ADHD. But children with the disorder showed no such drop in activity, indicating a disconnection between the center of the brain that allocates attention and the visual processing regions, Mazaheri said.

"The brains of the children with ADHD apparently prepare to attend to upcoming stimuli differently than do typically developing children," he said.

Children with ADHD did improve their reaction times when properly cued, but they don't seem to allocate resources as efficiently, Mazaheri said.

This is the first evidence from brain electrical patterns for a functional disconnection in cortical attention systems in ADHD, he said. Current definitions of ADHD are based only on behavior.

The research was originally inspired by a desire to combine laboratory and clinical research to go beyond existing measures of ADHD and get a better understanding of the condition, Corbett said.

"Clearly the crosstalk from bedside to bench has been fruitful," she said.

Other co-authors on the paper are staff research associate Sharon Corina, postdoctoral fellow Evelijn Bekker and research assistant Anne Berry.

The study was funded by the grants from the National Institutes of Health, the Netherlands Organization for Scientific Research, the Perry Family Foundation, the Debber Family Foundation and the Aristos Academy.

About UC Davis
For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 32,000 students, an annual research budget that exceeds $600 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools -- Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Additional information:
Center for Mind and Brain
Media contact(s):
Ali Mazaheri, Center for Mind and Brain, (562) 912-3243, amazaheri@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>