Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Dirty Dancing” with Maverick Chromosomes

In his Newark laboratory, David Kaback, a professor of microbiology and molecular genetics at the UMDNJ-New Jersey Medical School, has captured the remarkable and never before seen undulations of “dancing chromosomes.”

The rhythm of life may beat far deeper than anyone previously thought. And it may gyrate and pulse in a way that rivals the sensuous choreography of “Dirty Dancing.”

In his Newark laboratory, David Kaback, a professor of microbiology and molecular genetics at the UMDNJ-New Jersey Medical School, has captured the remarkable and never before seen undulations of “dancing chromosomes,” and his discovery may lead to way to prevent conditions like Down, Turner and Klinefelter’s syndrome as well as lend insight into the causes of first trimester spontaneous miscarriages.

In lectures to researchers and medical and graduate students, Kaback refers to his discovery as “Dirty Dancing,” which he also calls the “Mating Rites of Homologous Chromosomes.” His work on the process of chromosome pairing has been published in the Proceedings of the National Academy of Sciences and the journal Genetics and is funded by the National Science Foundation and the National Institutes of Health.

Kaback’s research focuses on meiosis, the specific type of division that takes place in sperm and egg cells. When most cells divide, the result is two new cells, each with 23 pairs of chromosomes. But during meiosis, sperm and egg cells are left with just 23 single chromosomes. When a sperm and egg cell combine, the single chromosomes become pairs.

In his laboratory, Kaback attaches green fluorescent protein tags to the chromosomes in yeast cells, which undergo meiosis in a fashion similar to humans. With the fluorescent tags activated, Kaback and his colleague Harry Scherthan from the Max Planck Institute and Bundeswahr Institute of Radiobiology in Germany are able to capture video of these chromosomes as they moved in spectacular fashion, first seemingly searching for each other during the process of pairing. Once joined, the chromosome pairs continue to move rapidly around the cell nucleus, with some individual “maverick” chromosomes breaking out of the large pack of chromosomes, not unlike dancing lovers in an elaborately choreographed movie.

To request an interview with David Kaback, Ph.D., please contact Jerry Carey, UMDNJ News Service, at 973-972-3000.

The University of Medicine and Dentistry of New Jersey (UMDNJ) is the nation’s largest free-standing public health sciences university with more than 5,600 students attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and a school of public health on five campuses.

Annually, there are more than two million patient visits at UMDNJ facilities and faculty practices at campuses in Newark, New Brunswick/Piscataway, Scotch Plains, Camden and Stratford. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, a statewide mental health and addiction services network.

Jerry Carey | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>