Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direction Selection

30.08.2012
New method for template-directed DNA synthesis in the 3’ and 5’ directions

When a cell divides, it passes on genetic information by producing copies of its DNA. Chemists have also learned to copy DNA. In the journal Angewandte Chemie, a German team has now introduced a new copying technique that uses a single strand of DNA as the “master copy”, like a cell, but does not require enzymes. Unlike earlier methods, it allows for stepwise growth of the chain in both the direction preferred by nature and the opposite direction typical of current DNA synthesis techniques.



Within a cell, the DNA double strand is separated in segments during the copying process. One of the single strands serves as the “master copy” or template. Polymerase enzymes snap together the corresponding nucleotides stepwise to form the new complementary strand, beginning with a “starting segment” known as a primer. The backbone of a DNA strand is an alternating chain of five-membered sugar rings and phosphate groups. The chain links are formed at the 3’ and 5’ oxygen atoms of the sugars; natural growth occurs in the 3’ direction.

One question relating to the origin of life is: How was nature able to copy DNA or RNA strands before polymerases existed? Since the 1980s, DNA synthesizers have allowed chemists to produce DNA strands, but without a template or primer; the sequence is determined by the order of addition of the reagents.

Only the use of protective groups that inhibit uncontrolled reactions and the programmed addition of the reagents ensure that the sequence of bases is correct. This is clearly not how nature does it. But how could template-directed primer extension function purely chemically, with no enzymes?

More recently, different approaches have been used to develop a method called chemical primer extension, which involves the reaction of activated nucleotides with the end of a slightly modified DNA primer. Clemens Richert, Andreas Kaiser, and Sebastian Spies of the University of Stuttgart (Germany) have now developed this method further.

They found a protective group that can be removed under gentle conditions so that the DNA duplexes made from the primer and template do not fall apart. This allows the reactivity of the nucleotides and the terminus of the primer to be switched on and off as desired, and the sequence information in the template strand can be read out nucleotide by nucleotide. For this method to work, the template and primer are both attached to tiny spheres. As in an automated synthesizer, the reagents and building blocks can flow over the spheres.

The primer is bound to the template through base pairing. A suitable nucleotide from the surrounding solution docks at the next vacant binding site of the template. The nucleotide then binds to the reactive end of the primer through activated phosphate units. The sites that are supposed to react are chemically altered to become more reactive than in natural DNA. The special thing about this method is that the chain extension can be controlled to occur in either the 3’ or the 5’ direction. This is not known to take place in nature.

So far, this process has remained quite slow and is limited to short sequences. Improvement should be possible through optimization of the reaction conditions and better automation.

About the Author
Clemens Richert is a Professor of Biological Chemistry at the Institute of Organic Chemistry at the University of Stuttgart. His research is focused on nucleic acids, and he is investigating molecular recognition, chemical replication processes, and the development of novel nanomaterials.
Author: Clemens Richert, Universität Stuttgart (Germany), http://chip.chemie.uni-stuttgart.de/members.html
Title: Template-Directed Synthesis in 3′- and 5′-Direction with Reversible
Angewandte Chemie International Edition 2012, 51, No. 33, 8299–8303, Permalink to the article: http://dx.doi.org/10.1002/anie.201203859

Clemens Richert | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chip.chemie.uni-stuttgart.de/members.html

Further reports about: Angewandte Chemie DNA DNA strand building block oxygen atom

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>